Nutrition in Stroke: Acute Care

By Rebecca Lustig, MA, RD, CDN, CNSC

Risk Factors: Obesity

- ► Obesity \rightarrow BMI >/=30 kg/m2
 - ► Overweight \rightarrow BMI 25-29 kg/m2
- According to WHO, >700 million (9.6%) were obese by 2015 worldwide
- Overweight/obesity significantly a/w increased risk of stroke
 - ► For every unit increase of BMI above normal → 6% increase in the adjusted relative risk of stroke
 - Similar for men and women, regardless of race
- Obesity \rightarrow increased risk of HTN and T2DM
- Central adiposity better predictor of stroke risk
 - Waist/hip ratio
 - Risk higher for middle-aged pts vs older pts

Risk Factors: Obesity Intermediate Variables

- Hyperlipidemia/Dyslipidemia
 - ► TG >150 mg/dL
 - LDL >100 mg/dL
 - ▶ HDL <40 for women, <50 for women
 - Total cholesterol >200 mg/dL
- Afib
 - Unclear if Afib causes atherosclerosis or vice versa
- OSA
 - Oxidative stress, inflammation, endothelial dysfunction
- HTN
 - Stage I: 140-159/90-99 mmHg
 - Stage II: ≥160/100 mmHg

Risk Factors: Obesity Intermediate Variables

- T2DM
 - HbA1c >/= 6.5
 - FBG >/= 126 mg/dL
 - OGTT >/= 200 mg/dL
 - ▶ Central adiposity \rightarrow hormone dysregulation \rightarrow insulin resistance over time
 - Increased inflammatory cytokines TNFα, iNOS, MCP-1, and IL-6.41; decreased adiponectin release
 - Obesity increases risk of HLD, HTN, T2DM, Afib, OSA which increase risk of stroke
 - Damage to vasculature from inflammation, advanced glycation end products contributing to atherosclerosis/likelihood of blockage and/or thrombosis
 - Hypercoagulability, enhanced platelet aggregation

Obesity Etiology:

Combination of genetic/environmental factors

- Psychology, intake vs energy expenditure, gut microbiome, social environment, food availability, food and nutrition-related knowledge
- Studies have found >50 genes a/w obesity including melanocortin 4 receptor, LEP, LEPR, INSIG2, ADIPOQ
- Genes control hormonal interactions b/t insulin, leptin, ghrelin

Risk Factors: Obesity

- Though stroke risk increased → prognosis may be better in overweight/obese vs normal wt counterparts
 - "Obesity paradox" decreased mortality rates in event of stroke
 - May also be r/t age, with younger obese pts at higher mortality risk vs older obese pts
 - May decrease risk of hemorrhagic transformation s/p stroke, stroke recurrence, improved functional recovery
 - OSA a/w higher risk of mortality/poor outcome
- May be r/t obese survivors healthier at baseline vs those with metabolically "benign" obesity
 - > 11-25% of obese people have normal BG and insulin regulation

Prevention: Weight Loss

- Wt reduction → may improve BP, BG, TG and HDL levels; insulin sensitivity; inflammatory marker
 - Proportional to amount of wt lost
- ▶ 5% to 10% wt loss:
 - ► HbA1c \rightarrow decrease 0.5%
 - SBP → decrease 3-6 mmHg
 - ► HDL \rightarrow increase 3 mg/dL
- 6% wt loss among overweight persons w/ impaired glucose metabolism
 - ▶ 58% reduction in progression to DM
- >10% wt loss:
 - ► HbA1c \rightarrow decrease 1.4%
 - ▶ 42% to 51% improvement in insulin resistance
 - ► TG \rightarrow 30-70% decrease
 - ▶ HDL \rightarrow 10% to 19% increase
- Diet-based programs including intensive/frequent lifestyle counseling \rightarrow most successful

Nutrition Specifics in Stroke:

- Ischemic stroke:
 - Dysphagia present in 78% of pts
 - Lack of hypermetabolism present
 - Kcal needs not significantly increased
 - Increased risk of aspiration PNA
 - May be on altered consistency diet, per SLP recs
 - Solids:
 - ▶ Purees \rightarrow mechanical ground \rightarrow dental soft
 - Liquids:
 - ► Honey-thick \rightarrow nectar-thick \rightarrow thin
- Hemorrhagic stroke:
 - ▶ ICH, IVH, IPH, SDH, SAH, EDH, hematoma
 - ~126-139% above normal energy needs based on HBE
 - Traumatic PRO needs are higher if TBI also present

References:

1. Genes and obesity. Centers for Disease Control and Prevention. <u>https://www.cdc.gov/genomics/resources/diseases/obesity/obesedit.htm</u>. Reviewed May 17, 2013. Accessed September 29, 2021.

2. Kernan W, Inzucchi S, Sawan C, Macko R and Furie K. A stubbornly obvious target for stroke prevention. *Stroke*. January 2013; volume 44(Issue 1:) 278-286. <u>https://doi.org/10.1161/STROKEAHA.111.639922</u>

3. Mei-Sze Lui M and Sau-Man M. OSA and atherosclerosis. J Thorac Dis. Apr 1, 2012; 4(2): 164-172. doi: 10.3978/j.issn.2072-1439.2012.01.06

4. Mueller C, Lord L, Marian M, McClave S ad Miller S. The ASPEN Adult Core Curriculum. 3rd ed. American Society for Parenteral and Enteral Nutrition; 2017

5. Oesch L, Tatlisumak T, Arnold M and Sarikaya H. Obesity paradox in stroke - Myth or reality? A systematic review. *Plos One*. March 14, 2017: <u>https://doi.org/10.1371/journal.pone.0171334</u>

6. Understanding HbA1c: Diagnosis. American Diabetes Association. <u>https://www.diabetes.org/a1c/diagnosis</u>. Accessed September 29, 2021.

7. Willeit K and Kiechl S. Atherosclerosis and atrial fibrillation: Two closely intertwined diseases. *Atherosclerosis*. April 2014; volume 233 (issue 2:) 679-681. <u>https://doi.org/10.1016/j.atherosclerosis.2013.11.082</u>

8. Woodward Magnuson B, Oyler D, Ruf K, Bailey N and Kolpek Hatton J. Chapter 22: Neurologic impairment. In: Mueller C, Lord L, Marian M, McClave S ad Miller S. The ASPEN Adult Core Curriculum. 3rd ed. American Society for Parenteral and Enteral Nutrition; 2017