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A B S T R A C T   

Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. 
Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. 
The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and 
infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via 
controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be 
elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a 
negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, 
we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics 
and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, 
activation, and function in immune regulation. Additionally, we identified that the general trend of charge 
disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise 
immune modulation approaches, which can be applied to many inflammation-associated diseases including solid 
tumors, chronic wounds, infection, and sepsis.   

1. Introduction 

Inflammation usually serves a protective role in minimizing injury or 
infection. Pathogen-Associated Molecular Patterns (PAMPs) from mi
crobial structures or endogenous Damage-Associated Molecular Patterns 
(DAMPs) released in tissue damage initiate the inflammatory response 
through interaction with Pattern Recognition Receptors (PRRs) [1] on 
immune cell surfaces to activate inflammatory pathways. Both innate 
and adaptive immune cells are orchestrated to initiate, regulate, and 
resolve inflammatory responses via secreting and responding to a profile 
of inflammatory signaling molecules, i.e. cytokines, to activate and re
cruit more immune cells to the site of inflammation [2]. Cytokines bind 

to cytokine receptors on immune cells in an autocrine or paracrine 
manner to further manipulate the inflammatory response. 
Pro-inflammatory cytokines induce further inflammatory responses, 
while anti-inflammatory cytokines act as regulatory signals to restore 
immune homeostasis. 

Activation of immune cells induces a shift from oxidative phos
phorylation towards aerobic glycolysis with an increase in lactate pro
duction [3], like the Warburg effect observed in tumor cells [3,4]. The 
local increases in lactic acid and protons result in an acidic microenvi
ronment [5]. Acidotic extracellular pH levels, which can range from pH 
5.5–7.0, are commonly found in inflammatory conditions such as tumors 
[6], autoimmune diseases [7], and sites of infection [8]. It has been well 
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documented that acidosis results in complex changes of immune cell 
activity [9]. In neutrophils, extracellular acidosis has been shown to 
increase cell activation, trans-differentiation, endocytosis/phagocytosis, 
and antigen presenting capacity, while decreasing neutrophil extracel
lular trap (NET) formation, apoptosis, reactive oxygen species (ROS) 
production, and cell migration [10–15]. In the case of monocytes and 
macrophages, acidosis has a complex effect on cellular activity. On one 
hand, decreased extracellular pH increases inflammasome activation 
and IL-1β production [16,17], however, it also reduces monocyte 
recruitment and production of inflammatory mediators such as TNFα 
and IL-6 [18] and reduces responsiveness of macrophages to LPS stim
ulation [19,20]. Similarly, acidosis has both pro- [21,22] and 
anti-inflammatory effects [23,24] on dendritic cells. In the case of nat
ural killer cells, low pH acts in an anti-inflammatory manner through 
inhibition of critical functions, including release of perforin and gran
zyme granules, secretion of pro-inflammatory cytokines, and cytotoxic 
response including anti-tumor immunity[25,26]. In summary, inflam
matory acidosis and lactate have pleiotropic effects on immune cells in 
inflammation. 

Cytokines are classified as interleukins, colony stimulating factors, 
interferons, tumor necrosis factors, tumor growth factors, and chemo
kines [27]. Cytokines are extracellular signaling proteins, which can be 
affected by environmental changes such as alterations in pH. Specif
ically, pH changes modify the charge distribution of a protein, and thus 
may alter protein geometry and interfere with the electrostatic in
teractions in protein binding [28,29]. The slight decrease in pH from 6.7 
to 6.0 significantly reduces the solubility of negatively charged protein, 
e.g. insulin [30]. In particular, imidazole in histidine residues has a pKa 
around 6.0, which can be very sensitive to inflammatory acidosis in local 
tissue (pH 5.5–7.0) and even systemic pH changes in sepsis (pH 7.0–7.2) 
[31]. The surface charges of cytokines, indicated by the isoelectric point 
(pI), stabilize proteins in aqueous solution and can contribute to the 
receptor binding. Thus, inflammatory acidosis has the potential to 
modify cytokines in terms of their stability, biodistribution, and affinity 
for receptor binding. Surprisingly, this phenomenon has not been dis
cussed in the literature. In addition, abundant serum proteins and 
plasma membranes are mostly negatively charged, and the extracellular 
matrix and cell surface are intrinsically decorated with negatively 
charged polysaccharides, e.g., heparin and hyaluronic acids. This 
negatively charged physiological matrix constantly influences the traf
ficking and biodistribution of cytokines as they make their way to their 
targets. Hence, cytokines may acquire distinct surface charges as 
part of their evolutionary adaptation, allowing them to efficiently 
carry out and regulate their functions through interacting with 
extracellular matrices (ECMs) and responding to immunological 
and pathological acidosis. 

Interestingly, we have observed a significant charge disparity be
tween major pro-inflammatory and anti-inflammatory cytokines, which 
provides us an opportunity for precise immune modulation in sepsis 
treatment [32]. Major pro-inflammatory cytokines, e.g., TNF-α, IL-1β 
and IL-6, have negative charges. This may be important for 
pro-inflammatory cytokines to avoid nonspecific interactions with 
extracellular molecules/matrix allowing for the effective initiation of an 
immune response against infection and limit tissue damage. In contrast, 
anti-inflammatory cytokines, e.g., IL-10, IL-4, and TGF-β, are predomi
nantly positively charged resulting in longer residence via charge in
teractions with negatively charged ECMs for prolonged and effective 
anti-inflammatory effects. Overwhelming inflammation induced by 
sepsis or other inflammatory diseases can have detrimental effects such 
as multiple organ failure. Thus, multiple mechanisms for effective im
mune regulation are essential to control the side effects of inflammation. 
Additionally, inflammatory acidosis may serve as an intrinsic regulatory 
mechanism to prevent overwhelming inflammation through suppressing 
immune cell activity and decreasing the activity of a broad spectrum of 
the negatively charged proinflammatory cytokines. However, prolonged 
acidosis may increase anti-inflammatory cytokine activity and residency 

to result in immune suppression in the later stage of sepsis and 
contribute to the immune suppressive microenvironment in solid 
tumors. 

It is difficult to separate the activity of cytokines from the cell re
sponses that occur from contact with environments undergoing immu
nological and pathological pH changes. In addition, many cytokines 
share overlapping and redundant signals during inflammation [33]. 
Bioinformatic analysis of intracellular proteomes revealed an interesting 
correlation between protein PI and subcellular localization, which is 
defined by the local pH and membrane charge [34]. Thus, we would like 
to investigate whether cytokines with overlapping and similar functions 
also share a similar surface charge, which allows for a universal pathway 
for immune regulation in response to acidosis. Although there are no 
specific studies exploring the potential significance of cytokine charge 
disparities, it is conceivable that if crucial pro-inflammatory cytokines 
displayed highly positive charges instead of the observed negative 
charges, our immune system could be compromised due to the entrap
ment of these cytokines within ECM resulting in ineffective initiation of 
immune responses. Thus, we propose a novel hypothesis that cyto
kine charge plays a critical role in regulating biodistribution and 
activity, contributing to immune regulation in response to the 
physiological and immunopathological microenvironment. To test 
this hypothesis, we review whether there is indeed a trend of charge 
disparity across different types of cytokines, which may provide a novel 
insight in immune regulation and lay out the foundation for the further 
investigation. In this review, we took a comprehensive survey of cyto
kine charge across different species (human, mouse, and rat) based on 
theoretical predication and measured isoelectric points (pIs). We further 
discussed the link between cytokine charge disparity and in vivo bio
distribution, circulating time, and spatiotemporal activities in regulating 
the immune status in different diseases with acidosis. 

2. Cytokine charge: an evaluation of protein isoelectric point 

Isoelectric point (pI) refers to a specific pH that a protein has a zero 
net charge. Proteins with a pI lower than 7.4 display negative charges at 
physiological pH, which increases the diffusion dynamics within the 
physiological microenvironment. Conversely, cytokines with a pI 
greater than 7.4 have a positive charge and tend to bind to the nega
tively charged ECM and serum proteins. Predicted pIs from different 
programs may vary due to the different algorithm used in estimating the 
pKa of ionizable amino acids [35]. In addition, different protein folding 
results in protein isomers and conformers [36], which give rise to 
different pI in isoelectric focusing measurements [37]. Some cytokines 
may also have post-translational modifications (PTM), e.g. enzyme 
cleavage, phosphorylation, glycosylation, etc., which may alter the pI in 
experimental measurements [38,39]. An online Proteome Isoelectric 
Point Database includes pI predictions utilizing over twenty different 
algorithms [40]. As shown in Table 1, we have extracted the mean and 
standard deviation of predicted pIs via all twenty programs for key cy
tokines. A comprehensive evaluation of different pI prediction algo
rithms revealed that the Bjellquivst algorithm with Expasy pKa set [41] 
achieved the best pI predictions with an optimal combination of corre
lation coefficient and RMSD on a set of benchmark proteins with 
measured pIs [42]. Thus, we have also listed the predicted pI based on 
Bjellquivst algorithm in Table 1, which are available on an online 
Phosphosite database [43]. We have also summarized the experimental 
pI for some recombinant cytokines that are available in the literature 
and included the pI of mouse and rat cytokines to examine the charge 
disparity in cytokines across species in Table 1. 

2.1. Cytokine charge disparity 

The predicted pIs are listed from low to high in Table 1 and cytokines 
are color-labeled to denote their different functions as generally indi
cated in the literature, e.g. pro-inflammatory (red), anti-inflammatory 
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(blue) and dual functional (green) [44]. It is clear in Table 1 that the 
majority of pro-inflammatory cytokines are negatively charged and 
located at the top section of the table with a pI less than 7.4. On the other 
hand, the majority of anti-inflammatory cytokines are positively 
charged with pIs greater than 7.4 as shown in the bottom part of the 
table. Major cytokines in both mouse and rat display the same charge 
disparity for pro- vs anti-inflammatory cytokines. Only a few animal 
cytokines were observed to have opposite charges compared to human, 
i.e. IFNα, GM-CSF, IL 27, and IL-12a for mouse and IL-6, IL-12a, and 
IL-36b for rat. 

We plotted all the predicted and measured pIs in Table 1 as a dot-plot 
in Fig. 1. As shown in Fig. 1, pro-inflammatory cytokines are mostly 

negatively charged with pI < 7.4, while anti-inflammatory cytokines are 
mostly positively charged with pI > 7.4 at physiological pH. Pro- 
inflammatory cytokines have a median pI of 5.9 while anti- 
inflammatory cytokines have a median pI of 8.2 (Fig. 1). Cytokines 
with dual functions, e.g., IFNα, IFNβ, IL-27, IL-12a, BAFF, APRIL and IL- 
2, have either positive or negative charges with mean pI of 6.2 (Fig. 1). 
Of note, IL-6 (pI of 6.17) is also considered a dual functional cytokine 
with mainly pro-inflammatory but also anti-inflammatory effects [45, 
46]. Recombinant cytokines have been applied as therapeutics in disease 
treatments [47]. Generally, the pIs of these recombinant cytokines have 
been measured via electrophoresis focusing assays. As shown in Fig. 1, 
there is no consistent trend of increase or decrease for measured pIs in 

Table 1 
Isoelectric Points of Cytokines. [39,43,48–68].  

Note: Red indicates cytokines with major pro-inflammatory function, blue indicates cytokines with major anti-inflammatory function, and green indicates cytokines 
with dual functions or for immune cell homeostasis. The mean±SD values of cytokines were calculated based on the prediction by twenty algorithm assembled in the 
online database [48]. These algorithum are: Bjellqvist, DTASelect, Dawson, EMBOSS, Grimsley, IPC2_peptide, IPC2_protein, IPC_peptide, IPC_protein, Lehninger, 
Nozaki, ProMoST, Rodwell, Sillero, Solomon, Thurlkill, Toseland, Wikipedia, IPC2.protein.svr19, IPC2.peptide.svr19. 
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comparison with predicted PI due to the different recombinant se
quences. It is important to note that the measured pIs still demonstrate 
the charge disparity for pro- and anti-inflammatory cytokines. 

2.2. Exceptions for charge disparity 

Although significant charge disparity is observed between different 
group of cytokines, six out of twenty (6/20) surveyed pro-inflammatory 
cytokines have significant positive charges (pI > 7.4), i.e., IFNγ, IL-36β, 
IL-17A, IL-3, IL-7, and IL-33. Similarly, four out of eleven (4/11) anti- 
inflammatory cytokines have significant negative charges, i.e., IL-1ra, 
IL-37, IL-38, and IL-36ra (Fig. 1). 

Cytokines that regulate innate immunity are produced primarily by 
mononuclear phagocytes such as macrophages and dendritic cells in 
response to PAMPs, e.g. LPS, although they can also be produced by T- 
lymphocytes, NK cells, endothelial cells, and mucosal epithelial cells. 
Cytokines produced in response to PRRs on cell surfaces, such as the 
inflammatory cytokines IL-1β, IL-1α, IL-6, IL-8, G-CSF, GM-CSF and 
TNFα, mainly act on leukocytes and endothelial cells in order to promote 
and control early inflammatory responses [69]. These key 
pro-inflammatory cytokines involved in the innate immunity mostly 
adopt negative surface charges (pI < 7.4) (Table 1) to ensure free 
diffusion to send inflammatory signals remotely for effective recruit
ment and activation of immune cells. However, several IL-1 family cy
tokines have opposite charges against this trend, including positively 
charged pro-inflammatory IL-33, IL-36β and negatively charged 
anti-inflammatory IL-1ra, IL-36ra, IL-37 and IL-38. These “outliers” may 
be attributed to their specific activation process, different working 
mechanisms, and specific microenvironment for immune functions, 
which are deciphered as following. 

2.2.1. “Outliers” in proinflammatory cytokines 
Interleukin-33 (IL-33) is a tissue-derived nuclear cytokine from the 

IL-1 family abundantly expressed in endothelial cells, epithelial cells, 
and fibroblast-like cells during both homeostasis and inflammation [70, 
71]. It functions as an alarm signal (alarmin) released upon cell injury or 
tissue damage to alert immune cells expressing the ST2 receptor 
(IL-1RL1) and plays a key role in innate activation of allergic inflam
mation. Intracellular full sequence of IL-33 is positively charged with a 
nuclear sequence with a pI of 8.89. After leaking into extracellular space 
during cell necrosis, it is cleaved by neutrophil enzyme into its active 
immune stimulating form with a pI ~4.8 [51] (Table 1), which follows 
the trend of charge disparity. 

IL-36 family belongs to a larger IL-1 superfamily and consists of 
three agonists (IL-36α/β/γ), one antagonist (IL-36Ra), one cognate re
ceptor (IL-36R), and one accessory protein (IL-1RAcP) [72]. As shown in 
Table 1, most IL-36 cytokines have negative charges, except IL-36β with 
of high pI of 9.6. Neutrophile-derived cathepsin G cleavage of IL-36β is 
needed for activation of potent pro-inflammatory reactions [73]. The 
IL-36 interleukins are most active in barrier tissues, such as the skin, 
lung, and intestines, suggesting that their main responsibility is to 
regulate the interaction between the environment and the body [74]. In 
the skin, IL-36 contributes to host defense through promoting the in
flammatory response. The positively charged IL-36β has a R/K rich 
sequence at C terminal (RKKWKSSFQHHHLRKKDKD), which may bind 
to heparin in ECM to prolong its tissue residency for effective enzymatic 
activation to induce strong local inflammation. 

Interferons, which play a critical role in activation of inflammatory 
pathways to induce immune response upon viral infection to control 
dissemination including at mucosal sites [75], do not all follow this 
trend and have a positive charge. IFNγ, known as the only member of the 
type II interferons, is a pleiotropic cytokine with antiviral, antitumor, 
immunoregulatory, and antiproliferative activity [76]. IFNγ has a sig
nificant positively-charged heparin binding domain [77], which yields 
overall significant positive charges. Heparin and heparan sulfate binding 
regulate the biodistribution, stability, and activity of IFNγ in physio
logical and pathological processes [78] via preventing enzyme degra
dation [79] and blocking interferon receptor-binding sites to regulate its 
activity [80]. 

Cytokines in adaptive immunity. Adaptive immunity is a slower- 
acting, longer-lasting, and more specific response than the innate 
response. Key pro-inflammatory cytokines in adaptive immunity, 
including IL-3, IL-5, IL-7, IL-17A and IL-12a, are primarily produced at 
sites of infection/inflammation in tissues by T- and B-lymphocytes to 
eliminate pathogens and control infection [81]. Unlike the major 
pro-inflammatory cytokines involved in innate immunity, those in 
adaptive immunity do not follow the trend but instead have a pI> 7.4 
and are thus positively charged (Table 1, Fig. 1). One possible expla
nation is that these cytokines primarily exert their function locally and 
thus the positive charge contributes to interactions with negative ECM 
proteins and heparin for their retention at the site of inflammation in 
tissues for longer effects to slowly acquire protective immunity. 

2.2.2. “Outliers” in anti-inflammatory cytokines 
Cytokines that regulate and suppress the inflammatory response act 

by two primary mechanisms: 1) active function via receptor binding to 
signal anti-inflammatory pathways or 2) passive inhibition of pro- 
inflammatory cytokines via competitive antagonism of pro- 
inflammatory receptors. Soluble cytokine receptors directly bind to cy
tokines to block intracellular signal transduction, and thus neutralize 
cytokine function. Most active anti-inflammatory cytokines (IL-4, IL-10, 
IL-11, IL-13, TGFβ), which exert their anti-inflammatory function via 
receptor binding and signal activation, follow the trend with positive 
charges (pI>7.4). However, the passive anti-inflammatory cytokines 
primarily consisting IL-1 family antagonists, e.g. IL36ra [72], IL-1ra 
[82], IL-37 [83], and IL-38 [84] (Fig. 1), antagonize their 
pro-inflammatory cytokine counterparts through competitive receptor 
binding and thus have similar chemical structures with the 
pro-inflammatory IL-1 family cytokines including possessing negative 

Fig. 1. Isoelectric Point of Pro- vs Anti-inflammatory Cytokines. Median pI: 
Pro-Inflammatory – Predicted: 5.9, Experimental: 6.80; Dual Function – Pre
dicted: 6.2, Experimental: 7.7; Anti-Inflammatory – Predicted: 8.2, Experi
mental: 8.0. 
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charges. 

3. Homogenous chemokine charges 

Chemokines are a subset of cytokines that primarily serve to regulate 
cell migration, particularly of leukocytes, to recruit the immune 
response to tissues and organs [85]. Other important functions of che
mokines include promoting helper T cell differentiation and blood vessel 
formation [86]. Chemokine structures are characterized by various 
cysteine residue patterns in the primary protein sequence that form di
sulfide bonds to establish the protein structure [87]. Chemokine activity 
is highly dependent on their immobilization onto cell surfaces and the 
extracellular matrix (ECM), which is primarily mediated by negatively 
charged glycosaminoglycans (GAGs) such as heparins [88]. It is well 
known that most chemokines (44 out of 48 as shown in Table 2) are 
positively charged with pI ranging between 8.49–10.97. Several of the 
most well studied potent pro-inflammatory chemokines, e.g. and 
MCP-1/2/3/4 (CCL2/8/7/13) and human IL-8 (CXCL8), have positive 
charges with pI ranging from 9.06–9.72. (Table 2). The positive charges 
of chemokines are critical for their interactions with negatively charged 
GAGs to establish concentration gradients to promote immune cell 
chemotaxis towards the site of infection and inflammation. Although 
chemokines can be further classified as inflammatory or homeostatic, 
there is no charge disparity between these two groups as all of these 
chemokines possess significant positively charged sequence for GAG 
binding [89]. 

Notably, only four (CCL3, CCL4, CXCL15, and CX3CL1) out of 48 
chemokines surveyed do not follow this pattern and have a pI less than 
7.4 (negatively charged). This is likely due to the specific cell sources for 
production and functionality of these chemokines. CCL3 and CCL4, also 
called macrophage inflammatory proteins, are produced by activated 
human monocytes, neutrophils, and lymphocytes in the peripheral 
blood. Of 28 CCL chemokines, only CCL3 and CCL4 are highly acidic and 
secreted as heterodimer that can form high molecular weight polymers 
under physiological relevant concentrations [91]. Aggregation of these 
chemokines protects against enzymatic degradation and sustains the 
tissue presence even without GAG binding [92]. The aggregates 
dynamically release chemokine monomers for chemoattractant and 
immune modulation [91]. In addition, these two chemokines have 
anti-HIV effects via competitive CCR binding [92]. 

CXCL15 is a mouse homolog of IL-8 [90], and also called Lungkine. It 
primarily serves as an important mediator of neutrophil migration from 
the lung parenchyma into the airspace during pulmonary inflammation 
[93]. It also serves as a negative regulator of multiple hematopoietic 
progenitor cells [94]. Unlike other CXCL chemokines, CXCL15 protein 
structure contains an extended C-terminal domain of ~65 aa, which 
contributes to an overall low isoelectric point and renders novel func
tions of hematopoietic regulation in addition to chemotactic properties 
[95]. 

CX3CL1 is a transmembrane protein that acts as an adhesion mole
cule with high molecular weight of 42 kDa [96] and can be cleaved into 
solution as a mature chemokine. N terminal AA1-AA76 has CX3C motif 
for cytokine functions, and soluble form CX3CL1 possesses a long mucin 
like domain from AA77 to AA317 [97], which contribute to the negative 
charges of the cytokine. It also promotes neo-angiogenesis and the 
migration of vascular smooth muscle cells [98], and thus plays an 
important role in vasculitis pathogenesis [99] and regulation of tumor 
cell invasion [100]. 

4. Post translational modifications (PTM) of cytokines 

PTM processes have a significant impact on the structure and func
tion of proteins [101]. PTMs, e.g. phosphorylation, sulfonation, acety
lation, lactylation, deamination, and hydrophobic modifications, can 
also alter the charge properties, most often causing a decrease in the pI 
of proteins through addition of a negative group or blocking a positive 
group on proteins. PTMs are important mechanisms that regulate the 
availability and activity of cytokines and chemokines [102]. During 
inflammation, the upregulation of protein-modifying enzymes such as 
matrix metalloproteases (MMPs), plasmin, CD13, CD26, and peptidy
larginine deaminases and agents like peroxynitrite may lead to the 
truncation, degradation, nitration, or citrullination of chemokines. This 
may further alter their biological activity [102]. Proteolysis via specific 
enzyme cleavage plays the most important role in the activation and 
regulation of cytokines and chemokines in inflammation and cancer 
[103,104]. In most cases, IL-1 family members, especially the 
pro-inflammatory cytokines IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, 
IL-36γ, are subjected to proteolytic processing intracellularly or after 
secretion to convert into mature bioactive forms [103]. Of note, posi
tively charged IL-33 is cleaved by an enzyme produced by neutrophils 
into its active immune stimulating form with reduced pI of 4.8 to result 
in a negative charge [51]. Interestingly, negatively charged 
anti-inflammatory IL-1 family cytokines, i.e. IL36ra, IL-1ra, IL-37, and 
IL-38, are primarily in active forms and do not require further proteol
ysis [103]. Most cytokines are glycosylated in the mature state in cells as 
N-linked or O-linked forms [105], e.g. IL-6 [106] and IL12 family cy
tokines [107], to regulate their activities. Glycosylation can enhance or 
inhibit cytokine stability and receptor binding activity [108]. Glyco
sylation may also further increase the negative charges of cytokines via 
introducing sialic acid residues, and thus may respond to the acidosis in 
inflammation. 

Chemokines also undergo PTMs to fine-tune their biodistribution 
and activity [102]. Interestingly, most chemokines are not subject to 
glycosylation according to bioinformatics predictions [109]. Chemo
kines interact with G protein coupled receptors (GPCRs) through a 
two-step, two site process: after initial recognition and binding, the 
N-terminus of the chemokine inserts into the GPCR pocket to alter re
ceptor conformation and activate intracellular signals. These 

Table 2 
Isoelectric points of human chemokines.  

Category Chemokines pI [43] 

Chemokine Subfamilies 
With Positive Charges 

CCL -1, − 5, − 6, − 9, − 10, − 11, − 12, − 14, − 15, − 16, − 17, − 18, − 19, − 20, − 21, − 22, − 23, − 24, − 25, − 26, − 27, − 28 8.49-10.23 
CXCL -1, − 2, − 3, − 4, − 5, − 6, − 7, − 9, − 10, − 11, − 12, − 13, − 14, − 15, − 16, − 17 8.93-10.97 
XCL -1, − 2 10.22-10.62 

Key Chemokines 
with positive Charges 

CCL2 (MCP-1) 9.4 
CCL8(MCP-2) 9.47 
CCL7(MCP-3) 9.72 
CCL13(MCP-4) 9.06 
CXCL8 (human IL-8) 9.1 

Special Chemokines 
with Negative Charges 

CCL3 (MIP-1a) 4.77 
CCL4 (MIP-1b) 5.13 
CXCL15 (mouse IL8) [90] 6.89 
CX3CL1 6.08  
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interactions may be perturbed by the modification of residues on che
mokines, especially for N-terminal processing [110]. The effect of 
enzymatic cleavage is highly complex. Depending on the chemokine and 
the type of truncation, cleavage can result in either an increase or a 
decrease in biological activity [111]. N-terminal cleavage of chemokines 
by CD26 (Dipeptidyl peptidase IV) or matrix metalloproteases (MMPs) 
has little effect on their overall charge. The N-terminal cleaved che
mokine remains positively charged to associate with GAGs to either 
potentiate or antagonize immune cell chemotaxis [112]. In contrast, 
C-terminal processing of chemokines by MMPs mainly affects their ca
pacity to bind to GAGs, resulting in degradation and inactivation, such 
as in the case of CXCL11 cleaved at its C-terminal helix by MMP-8 and 
MMP-12 [113]. In summary, the significance of charge disparity and 
charge effects for both cytokines and chemokines are generally sus
tained in PTMs for immune regulation. 

5. Charge effects of cytokines on ECM binding 

The extracellular matrix (ECM) plays a critical role in regulating the 
distribution of many proteins, ions, and drugs [114], as well as serving 
as an important barrier to infectious agents [115]. Size and charge se
lective properties of the ECM control the distribution of molecules 
within the extracellular space. For molecules smaller than the mesh size 
of the ECM, e.g. signaling molecules, surface charge significantly con
tributes to interactions with the ECM and thus molecule distribution 
[115]. Heparan sulfates are thought to be of particular importance to the 
barrier function of the ECM as they form localized charged patches to 
allow for unspecific but strongly selective filtering of particles in the 
extracellular environment [115,116]. Heparin and heparin sulfates have 
an average of 2.7 and about 2 negative charges per unit, respectively, 
due to the presence of sulfo- and carboxyl groups. Heparin-protein 
binding is predominantly characterized by clusters of positively 
charged basic amino acid clusters in proteins interacting with negatively 
charged sulfo- or carboxyl groups of the glycosaminoglycan (GAG) chain 
in heparin molecules [117]. Clusters of basic amino acids that form 
heparin binding sites in proteins can occur in the primary amino acid 
sequence, however, clusters may also be formed as a result of higher 
order protein structure resulting in basic amino acids close in space but 
not necessarily in amino acid sequence [118]. Heparin binding sites 
frequently contain clusters of 1, 2, or 3 basic amino acids flanked by 1 or 
2 non-basic residues on both sides [119]. Of the basic amino acids, 
arginine and lysine are most found at heparin and heparin 
sulfate-binding sites. Arginine binds heparin about 2.5x tighter than 
lysine at physiological pH with more stable hydrogen bonds and elec
trostatic interactions [120]. However, higher heparin binding affinity 
can be detrimental for in vivo chemotactic effects and lysine residue 
fine-tunes in vivo chemokine-GAG interactions and chemotaxis function 
[121]. 

As discussed above, chemokines bind strongly to GAGs in ECM to 
recruit immune cells for immune modulation. It is also known that 
numerous growth factors and cytokines, especially positively charged 
cytokines as shown in Table 1, e.g. IL-10 [122], TGF-β [123], IL-4 [124], 
IL-8 [125], IL-7 [126] and IFN-r [127], etc., bind to heparan sulfate and 
heparin in ECM to locally regulate inflammation and promote tissue 
repair. ECM proteins and heparan sulfates interact with these proteins to 
regulate their storage and activity [128]. Also, cell-surface GAGs with 
sulfate groups are important in binding and modulation of IL-10 activity 
[122]. Highly positively charged rhIFN-γ was found to bind 
heparin-agarose consistently at pH from 4 to 9, whereas, negatively 
charged rhIL-1β can’t bind heparin-agarose beads at these pH ranges 
[129]. Additionally, several other cytokines e.g. rhIL-4, rhIL-2, and 
TNF-α only show strong heparin binding at pH 5. These studies provide 
the evidence for selective cytokine heparin binding based on the charge 
disparity. 

6. Cytokine pharmacokinetics (PK) and metabolism 

Immune homeostasis is closely regulated locally and systemically. 
Production of cytokines is orchestrated to regulate the immune response 
for effective immune defense. The elimination of cytokines via enzy
matic degradation, liver metabolism, and renal clearance after diffusion 
from tissue into blood also plays an important role to control inflam
mation for timely resolution. Numerous recombinant cytokines have 
been developed for disease treatments. The characterization of the in 
vivo pharmacokinetics of the exogenous cytokines provides insight for 
better understanding of the mechanism of endogenous immune regula
tion. In addition to receptor binding and enzyme cleavage, the tissue/ 
ECM affinity, plasma protein association, and renal filtration of cyto
kines also contribute to their elimination [130]. These elimination 
processes are determined by their general physiochemical properties, e. 
g. charges, molecular weight, shape, and structural modification [131]. 
A comprehensive review [132] on the charge effects on antibody tissue 
distribution and PK profile concluded that: (I) shifts in pI of one unit or 
more can produce measurable changes in tissue distribution and ki
netics, (II) increases in net positive charge generally result in increased 
tissue retention and increased blood clearance, and (III) decreases in net 
positive charge generally result in decreased tissue retention and 
increased whole body clearance. Thus, it is reasonable to believe that the 
charge disparities between pro-inflammatory cytokines, 
anti-inflammatory cytokines, and positively charged chemokines play 
important roles in regulating the tissue distribution and blood circula
tion time to control inflammation. 

Renal filtration is a homeostatic process involved in the regulation 
small proteins and is directly proportional to the plasma concentrations 
of small protein to result in the renal catabolic or urinary excretion of the 
filtered loads [133]. Small signaling molecules, e.g. chemokine, are 
subjected to fast renal clearance, since therapeutic cytokine levels drop 
rapidly after injection [134]. A cytokine PK study revealed that the 
negative charged IL-6 and IL-1β can be eliminated more efficiently than 
the positively charged IL-10 and CXCL1 from blood after intravenous 
injection in normal mice, which can be impaired in mice with bilateral 
nephrectomy [135]. This finding may be due to the weak GAG associ
ation of the negatively charged cytokines. Although TNFα did not 
demonstrate efficient renal clearance in this study, this may be due to 
systemic inflammation and active TNFα production induced by the in
jection of high dose of TNFα (200 ng/mouse). The endogenous nega
tively charged pro-inflammatory cytokines produced in tissue have 
better tissue penetration for effective initiation of inflammation. At the 
same time, their fast elimination avoids the prolonged and over
whelming inflammation. On the contrary, the positively charged che
mokines and anti-inflammatory cytokines may reside in tissue for a 
longer time to recruit immune cells for infection/tissue damage control, 
and inflammation control, respectively. 

Kidney and liver metabolism are main routes for elimination of 
interleukins in addition to renal filtration, while other organs have a 
negligible role. The kidney is particularly important and eliminates a 
significant amount of circulating IL-1, IL-2, IL-3, and TNFα in rats [163]. 
The rat kidneys can also reabsorb certain interleukins, e.g. IL-2 and IL-3, 
when tubular cells are normal. IL-1 in the tubular fluid may be partially 
hydrolyzed at the border or directly absorbed. However, the human 
kidney may have less resorptive capacity than the rat kidney. Once 
absorbed, cathepsin D in lysosomes hydrolyzes interleukins and albu
min. Intact proteins are not returned to circulation [138]. Interleukins 
can be broken down in the liver due to functional and/or clearance re
ceptors, such as hepatic lectins. These receptors are found in hepato
cytes, Kupffer cells, and endothelial cells, leading to various biological 
effects and/or catabolism [163]. When escalating doses of IL-2 or TNFα 
were given intravenously, a progressive prolongation in half-lives and a 
reduction in the apparent volume of distribution (Vd) were observed, 
indicating the importance of cell receptor binding at low doses [164]. It 
is known that slightly anionic macromolecules showed relatively low 
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hepatic clearance [165]. The pharmacokinetic studies of IL-1, − 2, − 3, 
− 6, and TNFα revealed rapid cleanup from the bloodstream after iv 
injection [134]. 

In vivo catabolic pathways, such as renal filtration and liver uptake, 
efficiently extract these proteins from circulation. This is a beneficial 
mechanism as these cytokines are highly potent immunomodulators. 
The distribution half-life of the recombinant cytokines has been deter
mined in minutes, whereas the elimination half-life lasts several hours.  
Table 3 summarizes some experimental data of in vivo serum half-life for 
some recombinant human cytokines as therapeutics administrated via 
different routes, e.g., intravenous (I.V.), intraperitoneal (I.P.), subcu
taneous (S.C), or intramuscular (IM) injections in human or animal 
models. Generally, cytokines have very short half-life in vivo due to 
small molecular weight [153]. In comparison, hrIL-12 forms a hetero
dimer with molecular weight of 70 kDa, which significantly prolongs 
t1/2 to hours in human and about a day in monkey. There is also a trend 
that the administration routes via subcutaneous, intramuscular, or 
intraperitoneal injections prolong the elimination time compared to 
intravenous injection. Given the limited studies with different recom
binant proteins, the impact of cytokine charge on PK and biodistribution 
profiles is still unknown. It is important to note that cytokines are a 
diverse group of molecules with varying physicochemical properties, 
and their biodistribution and half-life can be influenced by multiple 
factors beyond their pI, such as receptor binding, protein size, and 
post-translational modifications. 

7. Cytokine charge disparity in diseases with pH alteration 

Inflammation is involved in the pathogenesis and progression of 
many diseases. Inflammatory cytokines and chemokines are implicated 
in regulating both immune cells and tissue cells in the diseases. In 
particular, pH alterations that occur in certain pathological microenvi
ronments, e.g., solid tumor, chronic wound healing and infections, 
potentially have a direct impact on cytokine activity through the charge 
disparity to regulate the immune response and promote pathogenesis. 

7.1. Acidosis in solid tumors 

Inflammation is a hallmark of cancer and participates in all cancer 
stages, i.e., tumorigenesis, progression, metastasis, and cancer therapy 
[166]. Inherently, cytokines play an important and pleiotropic role in 
both the promotion and inhibition of cancer tumors [167]. For instance, 
IL-22 has shown to regulate the expression of many genes and activate 
DNA-damaging responses in epithelial stem cells to prevent mutagenesis 
and carcinogenesis [168]. During tumor progression and metastasis, 
NF-kB controls the expression of more than 100 inflammatory genes 
including cytokines (TNFα, IL-6, IL-1β, etc.) that promote cancer growth, 
epithelial-mesenchymal transition, and migration [169]. In addition, 
cytokines such as IL-8 and VEGF play a key role in cancer angiogenesis, 
invasion, and metastasis [170,171]. However, other cytokines can have 
anti-tumor activity, such as IFN γ, IFNα, IL-2, and IL-12, to stimulate 

Table 3 
Half-Life of human recombinant cytokines in human or animal models.  

Cytokines MW (kDa) Animal Models 
(Injection routes) 

Half-Life (min/hr) 

Ref. Two-compartment Non-compartment 

Distribution Elimination Elimination 

Negatively Charged Cytokines 
hrIL-1β 30.7a - Mice (I.V.) ~5 min ~27 min  [136]   

- Rat (I.V.) ~3 min ~4 hr  [137]   
- Rat (I.V.) / / 19 min [138] 

hrTNF-α 25.64a - Human (I.V.) ~24 min /  [139]  
~17b - Mice (I.V.) 18.5-19.2 min 102-162 min  [140]   

- Rat (I.V.) 2.1 min 14.4-31.8 min  [141] 
hrIL-15 12.9b - Human (I.V.) / / ~2.5 hr [142] 
hrIL-6 19-30b - Mice (I.V.) / / ~7 min [143]   

- Mice (I.P.) / / ~3 hr [143]   
- Rat (I.V.) ~3 min ~55 min  [144] 

hIL-12 70a - Rat (I.V) / / 2-5 hr [145]  
(heterodimer) - Monkey (I.V.) / / 13-19 hr [146] 

hrIL-12  - Human (S.C.) / / 30 h [146] 
hrIL-1ra 17.3b - Human (I.V.) 21 min 108 min  [147]   

- Human (I.M) / / 2.22 ~ 3.29 hr [148]   
- Human (S.C.) / / 4~6 hr [149]   
- Mice (I.P.) / / 0.5 ~ 3.2 hrg [150] 

hIFN α-2b 19a - Human (I.V.) 0.1 hr 1.7 hr  [151]   
- Human (S.C.) / / 2.9 hr [151]   
- Human (I.M.) / / 2.2 hr [151] 

Neutral cytokine 
hrIL-2 17.6a - Human (I.V.) 6-7 min ~60 min  [152]   

- Human (I.V.) 12.9 min 85 min  [153]   
- Mice (I.V.) / / 7-9 min [154]  

25.2b - Mice (S.C.) / / 44 min [155] 
Positively Charged Cytokines 
mIL-10 35 (dimer)b - Mice (I.V.) / / 141.12 min [156] 
hIL-10 18b - Mice (I.V.) / / 57.6 min [156] 
hrIL-10 20.5a - Human (I.V.) / / 2.3-3.7 hrd [157] 
hrIL-7 20.2a - Human (S.C.) / / 6.46-9.8 hrc [158] 
hrTGF-β1 25b - Rat (I.V.) 10.7 mine 61 mine  [159]   

- Rat (I.V.) 2.5 min f 163 minf  [159] 
pigTGF-β1  - Rat (I.A.) / 3.1 min  [160] 
IL-4 17.5a - Mice (I.V.) / / 19 ± 2 min [161] 
hrIL-4 15.4b - Human (I.V.) / / 19 ± 8.7 min [162] 
hrIFN-γ 19.3a - Rat (I.V.) 1.1 min 94 min  [79] 

Notes: a predicated molecular weight of the native cytokines or b the reported molecular weight of the recombinant protein reported in the literature; c S.C. dose 10 ug/ 
kg to 60 ug/kg (detected by ELISA); d I.V. dose 25 ug/kg to 100 ug/kg (detected by ELISA); e I.V. dose 1 mg/kg (detected by ELISA); f I.V. dose 50uCi/kg (detected by 
TCA precipitable radioactivity); g I.P. dose 1.5 mg/kg to 2.5 mg/kg (detected by ELISA). 
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anti-tumor NK cells or cytotoxic T cells in both innate and adaptive 
immunity [167,172]. 

Cancer growth dramatically upregulates aerobic glycolysis resulting 
in an excessive amount of lactic acid production and acidification of 
tumor microenvironment, known as Warburg effect, to adapt to hypoxic 
conditions [173]. Solid tumor acidosis ranging from pH 6 to 7 can 
disrupt immune function resulting in worsened immune surveillance 
[9]. Extensive reviews have been published on the immunosuppressive 
and pro-tumor effects of tumor acidosis on immune cell functions in the 
local microenvironment [174]. For example, lactic acidosis was found to 
upregulate the expression of TGFβ, which in turn regulates VEGF and 
MMPs expression, reinforcing the cancer aggressiveness [175]. Addi
tionally, it was found that acidic pH decreases natural killer and T cells 
in colorectal cancer and that pH modulation decreases levels of cyto
kines with EMT role while increasing cytokines that activate immune 
cells [175]. However, there was no discussion on whether tumor 
acidosis also alters the activity of cytokines, e.g., decrease the potency of 
negatively charged pro-inflammatory cytokines and increase the po
tency and residency of positively charged anti-inflammatory cytokines, 
thus contributing to immune suppression. Recently, a study for IL-2, a 
cytokine crucial for CD8 T cell and NK cell function, has shown that the 
IL-2:IL-2Rα interaction was reduced substantially at acidic pH 6 where 
the cytokine receptor binding site has a pH switch region that controls 
the interaction. As a result, an IL-2 variant was designed that is insen
sitive to pH change and has an improved therapeutic effect [176]. TNFα 
analogs with more positively charged flexible N-terminal region 
demonstrated increased binding to the negative glycosaminoglycans, 
initiating cell surface interaction to result in more effective targeting to 
TNFα receptor for increased induction of cytotoxicity [177]. An 
improved understanding of the charge properties of cytokines and the 
response to the tumor acidosis may facilitate enhanced cytokine engi
neering to harness strong anti-cancer immunity for effective tumor 
treatments and immunotherapy. 

7.2. Wound healing 

Healthy skin surface is known to have slightly acidic pH ranging from 
4 to 6 [178], which maintains the balance of skin’s natural oils and 
defends against airborne pathogens such as bacteria. Upon skin injury, 
multiple cellular activities and molecular cues take place in the lesion 
sites, undergoing four overlapping phases: hemostasis, inflammation, 
proliferation, and remodeling. Acute wounds generate a rapid and 
strong immune response during the inflammation phase to clear the 
damaged cells and potential pathogen. It is known that pH reduces as 
acute healing advances, suggesting that skin surface pH may serve as a 
potential indicator for the healing stage and a target for therapeutic 
intervention [179]. Chronic wounds result from an insufficient ability to 
recruit an appropriately strong immune response, but rather maintain a 
persistent low-grade mild inflammation and thus fail to transform from 
inflammation phase to proliferation phase [180]. 

pH changes affect wound healing and treatment of both chronic and 
acute wounds through influencing the skin cell response, immune cell 
response, enzyme activity, microbial virulence, and drug efficacy [181]. 
In addition, pH changes may also interfere cytokine activities and thus 
contribute to the wound immune status. pH changes differ significantly 
in acute versus chronic wounds: acute wounds have a more neutral pH 
followed by a drop in pH due to hypoxic conditions and production of 
lactic acid, whereas delayed chronic wounds have an oscillated alkaline 
pH ranging 7.2 to 8.9 [179]. Bacteria present in chronic, non-healing 
wounds with infection can produce toxic substances, i.e., ammonia, 
which increases the alkalinity of the wound tissue [182]. Elevated pH 
levels in chronic wounds may sustain a mild level of inflammation by 
decreasing the activity and reducing the ECM binding of the positively 
charged anti-inflammatory cytokines. Additionally, the elevated pH fa
vors certain protease activity and disrupts ECM construction, thus 
hampering wound healing process [182]. 

7.3. Infection 

During bacterial infection, local acidosis can range from pH 5.9 to 
7.0 due to a combination of factors including tissue hypoxia resulting in 
anaerobic glycolysis and accumulation of lactic acid, bacterial fatty acid 
production, and hypochlorous acid production by activated neutrophils 
at the site of infection [5,183,184]. Local acidosis has been linked to a 
variety of infectious disease processes including septic arthritis, urinary 
tract infection, peritonitis, and lung infections, proving to be protective 
in some instances while destructive in others. For example, in gram 
negative septic arthritis, high white blood cell count is strongly associ
ated with decreased pH in the synovial fluid, and it is believed that this 
connection contributes to poor therapeutic response to aminoglycoside 
antibiotics in these patients [185]. On the other hand, extracellular 
acidosis in the kidney is associated with the expression of antimicrobial 
peptides and resistance to uropathogenic E. coli infection [186]. 

It has been well documented that acidosis significantly impacts im
mune cells during infection and inflammation[9]. Activation of immune 
cells induces a shift of energy production to aerobic glycolysis with an 
increase in lactate production intracellularly [3]. The resulting acidosis 
significantly decreases neutrophil phagocytosis for bacteria clearance 
and triggers the release of IL-1β as a result of immune cell pyroptosis 
induction to perpetuate further inflammatory reactions [187]. This re
sults in enhanced production of pro-inflammatory cytokines and 
increased neutrophil recruitment to enable host clearance of the infec
tion but can also result in collateral inflammatory damage [188]. A 
hypercapnic acidosis mouse model via 10% CO2 exposure has been 
subjected to Pseudomonas pneumonia infection [189]. Acidosis was 
associated with increased mortality from lung infections in these mice 
with the decreased phagocytosis of bacteria by alveolar neutrophils. 
Interestingly, acidosis didn’t impact neutrophil alveolar infiltration, 
rather it inhibited the early cytokine response (reduced TNFα and IL-6) 
at 7 h post infection but this effect abolished at 15 h. It indicates that 
immune cells may take a secondary mechanism, e.g. pyroptosis, in 
response to acidosis to produce IL-1β and IL-18 to boost another round of 
inflammatory responses for pathogen clearance upon initial failure of 
immune response for infection control. Unfortunately, pyroptosis and 
resulting IL-1β and IL-18 were not characterized in this study. It is worth 
mentioning that TNFα and IL-6 as early pro-inflammatory cytokines 
have only slightly negative charges with pIs ~6, while later cytokines 
IL-1β and IL-18 have much lower pIs < 5 (Table 1). Thus, TNFα may be 
more sensitive to the infection-induced acidosis with pH ranging from 
5.9–7.0; while IL-1β and IL-18 may be less sensitive to acidosis for 
further effective immune stimulation under acidotic conditions. 

7.4. Sepsis 

Sepsis is a complex, heterogenous disease that results in a dysregu
lated immune response, leading to significant morbidity and mortality 
[190,191]. In sepsis, many immune and non-immune mediators are 
released, including PAMPs, resulting in a massive production of cyto
kines known as “cytokine storm” [191]. As a result, sepsis can cause 
overwhelming inflammation leading to multiple organ failure and death 
[192]. Like many inflammatory processes, sepsis can result in both tis
sue and systemic acidosis [18,19,183,186,188,193]. In sepsis, pH 
regulation plays a critical role in the inflammatory response. For 
example, a knockout model of proton sensing G protein Coupled re
ceptor G2A resulted in decreased cytokine production, inadequate 
bacterial scavenging, and increased lethality in a sepsis mouse model 
[194]. Additionally, bicarbonate administration to restore pH balance 
has variable efficacy, with no survival benefit in sepsis patients with 
acidosis [195]. This suggests that acidosis in sepsis pathology serves as 
important but complex regulatory mechanism of the immune response. 
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8. Perspectives 

In summary, our analysis further confirmed our initial observation of 
the charge disparity between pro-inflammatory and anti-inflammatory 
cytokines (Fig. 2). Of particular note, almost all chemokines adopt 
positive charges to effectively induce chemotaxis of immune cells. 
Although it is hard to separate the pH effects on immune cells and 
cytokine activity in immune regulation, it is important to recognize the 
charge disparity of cytokines, which provides a novel angle to explore 
for improved understanding of immune regulation in regular inflam
mation processes as well as immunopathogenesis. More importantly, we 
may develop effective approaches to target the charge disparity for 
precise immune modulation. For example, engineering of surface 
charges or binding site charge properties in recombinant cytokines may 
produce more effective therapeutics to overcome the limitation of 
pathogenic acidosis for disease treatments [176]. Targeting the charge 
disparity of cytokines may also provide a unique path to develop diag
nostic and prognostic tools to precisely diagnose patient immune status, 
especially in sepsis given the dynamic, complex, and heterogenous 
cytokine and cellular dynamics. Further, more therapeutic interventions 
can be developed targeting the charge disparity of cytokines to modulate 
immune status more effectively and precisely without causing immune 
suppression. Our group has developed a well-defined telodendrimer 
nanotrap platform [196,197], which effectively captures proteins, cy
tokines, and endotoxin based on the synergistic combination of multiple 
charge and hydrophobic interactions. We have demonstrated that we 
can effectively capture cytokines with similar charges by introducing the 
opposite charges in the nanotrap to target a broad spectrum of 
pro-inflammatory or anti-inflammatory cytokines for precise control of 
hyperinflammation or immune suppression in sepsis and other critical 
illness [32,198]. 
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