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Approximately 40% of people with schizophrenia are classified as having “high
inflammation.” This subgroup has worse neuropathology than patients with “low
inflammation.” Thus, one would expect the resident microglia and possibly monocyte-
derived macrophages infiltrating from the periphery to be “activated” in those with
schizophrenia with elevated neuroinflammation. To test whether microglia and/or
macrophages are associated with increased inflammatory signaling in schizophrenia,
we measured microglia- and macrophage-associated transcripts in the postmortem
dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both
groups were stratified by neuroinflammatory status based on cortical mRNA levels of
cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged
(IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation
schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels
were increased in patients, substantially so in the high inflammation schizophrenia
subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast,
high inflammation controls did not have elevated CD163 mRNA compared to low
inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64
mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in
the high inflammation schizophrenia subgroup compared to high inflammation controls,
while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs)
were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment
chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and
CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001).
Collectively, our findings support the co-existence of quiescent microglia and increased
pro-inflammatory macrophages in the cortex of people with schizophrenia.
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INTRODUCTION

Mounting molecular evidence indicates that dysregulation
of the immune system may play a significant role in the
pathogenesis of schizophrenia (van Kesteren et al., 2017).
Variation in immune-related genes has been linked to an
increased risk for developing schizophrenia, including genes
within the major histocompatibility molecule (MHC) locus
(Schizophrenia Psychiatric Genome-Wide Association Study
[GWAS] Consortium, 2011) and genes encoding specific
inflammatory cytokines (Bocchio Chiavetto et al., 2002; Schwarz
et al., 2006, 2014). Further, we and others have found elevated
mRNA levels of pro-inflammatory cytokines and immune
regulators in postmortem cortical and subcortical brain tissue
from people with schizophrenia. These changes included
increases in interleukin (IL)-1β, IL-6, IL-8 (Fillman et al., 2013;
Volk et al., 2015; Pandey et al., 2018), Serpin Family A Member 3
(SERPINA3), interferon-induced transmembrane proteins 2 and
3 (IFITM2 and IFITM3) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) (Arion et al., 2007; Saetre
et al., 2007; Fillman et al., 2013, 2014; Volk et al., 2015, 2019;
Zhang et al., 2016; Volk, 2017; Cai et al., 2018; Purves-Tyson et al.,
2019; Murphy et al., 2020b; Weissleder et al., 2021). Increases
in mRNA and protein levels of cytokines in the blood of living
patients are also consistently reported, suggesting some degree of
both peripheral and central (brain) immune activation in people
with schizophrenia (Kowalski et al., 2001; Theodoropoulou et al.,
2001; Potvin et al., 2008; Miller et al., 2011; Perkins et al.,
2015; Boerrigter et al., 2017; Hoseth et al., 2017; Di Biase et al.,
2021).

Despite evidence of neuroinflammation in at least 40% of
patients (Fillman et al., 2013, 2014; Boerrigter et al., 2017; Purves-
Tyson et al., 2019; Lizano et al., 2020; Weissleder et al., 2021),
which we defined as the “high inflammation” schizophrenia
subgroup, the brain-resident immune cells—microglia—do not
appear to be activated in the prefrontal cortex in schizophrenia
in a way that is typical of other neuroinflammatory conditions.
While earlier studies produced conflicting evidence regarding
microglial activation in schizophrenia (Bayer et al., 1999;
Falke et al., 2000; Wierzba-Bobrowicz et al., 2005; Foster et al.,
2006; Nakatani et al., 2006; Steiner et al., 2006, 2008; Saetre
et al., 2007; Connor et al., 2009; Kano et al., 2011; Busse et al.,
2012; Fillman et al., 2013; Sinkus et al., 2013; Gos et al., 2014;
Durrenberger et al., 2015) cohorts have shown that microglial
networks appear downregulated in people with schizophrenia,
which co-occurs with an overall up-regulation of inflammatory
pathways (Gandal et al., 2018b; Toker et al., 2018). This
raises the possibility that cortical microglia are suppressed
in the microenvironment of people with schizophrenia and
cortical inflammation. However, normally microglia are
more activated during acute inflammatory conditions (Streit
et al., 2004; E Hirbec et al., 2017; Sousa et al., 2018). The
notion of putative microglial suppression in schizophrenia
is further bolstered by studies showing higher densities of
dystrophic and degenerative microglia with damaged processes
(Wierzba-Bobrowicz et al., 2005; Clare et al., 2021) and
increased markers of cellular senescence within microglia,

including decreased volume fraction of mitochondria and
increased area of lipofuscin granules (Uranova et al., 2021).
Interestingly, though, other evidence supports over-activity
of microglia in schizophrenia that may differ between cortical
and subcortical regions (prefrontal cortex vs. midbrain), and
between gray and white matter (Purves-Tyson et al., 2020;
Gober et al., 2021), and which may vary depending on stage
of illness (first episode vs. chronic) (Bloomfield et al., 2016).
These inconsistent results might also be contributed from
the proportion of people with elevated inflammation in the
studies. High inflammation subgroups in schizophrenia and
controls may have different phenotypes of microglia, and
combining high and low inflammation subgroups could mask
the potential differences between these subgroups within
diagnostic categories.

The fact that the state of microglia may be highly variable
and possibly even suppressed concomitant with elevations in
cytokines, suggests that other cell types may contribute to
neuroinflammation in schizophrenia, potentially myeloid cells.
One type of myeloid cells in the brain, macrophages, are poised
to make major contributions to inflammatory transcript levels
as they synthesize high levels of many inflammatory factors
(Varvel et al., 2016; Park et al., 2020). Indeed, we recently
found elevated mRNA and protein levels of the macrophage
marker CD163 in the brains of people with schizophrenia,
and this increase was associated with changes in endothelial
gene expression (Cai et al., 2018; Purves-Tyson et al., 2020;
Weissleder et al., 2021). Further, circulating macrophages
can enter the brain under conditions of neuroinflammation
(Minogue, 2017), and we found parenchymal and perivascular
CD163+ macrophages were increased in density in the high
inflammation subgroup of schizophrenia patients (Purves-Tyson
et al., 2020; Weissleder et al., 2021). The changes in endothelial
genes and increased density of CD163+ macrophage may suggest
that more macrophages are infiltrating the brain specifically in
high inflammation schizophrenia subgroup, but it is not known
if this would also occur in normal controls defined as having
high inflammation.

There is lack of clarity concerning which molecular markers
can be best used to distinguish microglia from macrophages.
For example, the commonly used microglial markers (HLA,
CD68, and IBA1) are also expressed by perivascular macrophages
(Faraco et al., 2017; Swanson et al., 2020). The inconsistency
of microglial marker changes in schizophrenia could therefore
be due to the use of single markers to measure microglia
activity/density. Another commonly used “microglial marker,”
TSPO, can be expressed by macrophages and astrocytes (De
Picker and Morrens, 2020; Notter et al., 2020). Therefore, we
measured multiple microglial markers including TSPO and
macrophage marker CD163 mRNA levels to compare the
molecular phenotypes of microglia and macrophages between
schizophrenia and normal controls as well as between high and
low inflammation subgroups. We also measured transcript levels
of the reactive astrocyte marker GFAP since cortical astrogliosis
may exist in a subset of people with schizophrenia (Webster
et al., 2005; Feresten et al., 2013; Catts et al., 2014; Toker et al.,
2018; Murphy et al., 2020a) and reactive astrocytes reciprocally
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influence microglia polarization states (Jha et al., 2019; Corsi-
Zuelli and Deakin, 2021).

Macrophages and microglia exist along a spectrum of
phenotypes, with “M1-like” pro-inflammatory and “M2-like”
anti-inflammatory phenotypes representing the extremes of this
spectrum (Xue et al., 2014), and it is not currently known which
macrophage phenotype predominates in the cortex of people with
schizophrenia. Macrophages may dampen neuroinflammation
emanating from damaged tissue or, conversely, may worsen
or even cause neuroinflammation in the brain. However,
macrophages in the normal healthy brain may exist as a
different phenotype, maintaining a balanced inflammation and
immune response during inflammation. Though CD163 is often
used as a macrophage marker, it cannot reliably differentiate
between macrophage phenotypes (Roberts et al., 2004; Kim
et al., 2006; Holfelder et al., 2011; Zhang et al., 2011, 2012;
Lisi et al., 2017) and is thus not useful in distinguishing
macrophage type changes in high inflammation schizophrenia.
Typical “M1-like” macrophages express CD64 mRNA, whereas
the “M2-like” macrophages express CD206 mRNA and the
anti-inflammatory cytokine IL-10 mRNA. The ratio of CD64
mRNA and CD206 mRNA could indicate whether pro- or
anti-inflammatory macrophages are more likely to be found
in high inflammation schizophrenia subgroup. One type of
regulatory macrophage (M2), M2b, can secrete some cytokines
known to be elevated in schizophrenia including IL-1, IL-6, and
TNF-a (Fillman et al., 2013; Volk et al., 2015; Zhang et al.,
2016). Therefore, we measured the following pro- and anti-
inflammatory macrophage marker mRNAs : CD64, CD206, IL-
10, and CD86 (M2b marker) in the dorsolateral prefrontal
cortex of people with schizophrenia and unaffected controls.
We hypothesized that the macrophage recruitment chemokine
(CCL2/MCP-1) (Semple et al., 2010; Gschwandtner et al., 2019),
and the macrophage-derived chemokine IL-8 would be elevated
in the high inflammation schizophrenia cortex (Huber et al.,
1991; Bell et al., 1996), and we performed regression analysis to
predict which macrophage types are more related to CCL2.

Here, we measured multiple microglia, astrocyte and
macrophage marker mRNA levels in the prefrontal cortex in
people with schizophrenia and controls (stratified into low
and high inflammation subgroups in both diagnostic groups).
This allowed us to ask what, if any, changes may be specific
to high inflammation schizophrenia as compared to high
inflammation controls. We anticipated that macrophage and
astrocyte markers would be elevated in high inflammation
schizophrenia rather than microglia markers compared to
high inflammation controls. We further predicted that one
of the macrophage markers, CD163 mRNA, would correlate
with the “M1-like” marker CD64, and that these increases
in pro-inflammatory macrophage markers may be specific to
high inflammation schizophrenia subgroup. Given that the
macrophage chemoattractant CCL2 promotes pro-inflammatory
“M1-like” polarization in human macrophages (Sierra-Filardi
et al., 2014), we also expected that CCL2 mRNA to be increased
in high inflammation schizophrenia and to be positively related
to proinflammatory macrophage markers and negatively related
to anti-inflammatory macrophage markers (Yang et al., 2011;

Gschwandtner et al., 2019). Furthermore, we compared our
mRNA levels between diagnostic groups with the larger cohort
RNA sequencing data from PsychENCODE Consortium to
determine if we could determine the diagnostic specificity of our
main diagnostic effects.

MATERIALS AND METHODS

Human Post-mortem Dorsolateral
Prefrontal Cortex Tissue Collection and
Demographics
Human post-mortem brain DLPFC tissue (Brodmann Area 46)
was obtained from the New South Wales Brain Tissue Resource
Centre (TRC) and Stanley Medical Research Institute (SMRI).
The final mRNA cohort of this study included 72 schizophrenia
cases and 69 normal controls. The detailed demographics are
shown in Table 1. The age, sex, brain hemisphere, postmortem
interval (PMI), and RNA integrity number (RIN) were matched
between diagnostic groups. The mean pH was slightly lower in
the schizophrenia group (p = 0.07). Our study was approved by
the Human Research Ethics Committee at University of NSW
(#HREC: HC12435; HC17826).

All cases in the cohort were previously categorized into low
or high inflammation subgroups using a two-step recursive
clustering analysis based on mRNA expression of SERPINA3, IL-
1β, IL-6, and IL-8 (Fillman et al., 2013, 2014). The combined
cohort used in this study consisted of 57 low inflammation
controls (CON-low), 12 high inflammation controls (CON-
high), 42 low inflammation schizophrenia (SCZ-low), and 30
high inflammation schizophrenia (SCZ-high). Demographic
comparisons between inflammation subgroups are shown in
Table 2. Age, sex, PMI, and RIN were matched across all the
inflammation subgroups. However, brain pH was significantly
lower in both high inflammation subgroups (p < 0.0001),

TABLE 1 | Comparison of demographic variables between diagnostic groups.

Demographics Control Schizophrenia t/U/χ 2 (df) P-value

(n = 69) (n = 72)

Age in years ± s.d. 48.01 ± 12.17 47.07 ± 12.45 t(139) = 0.46 0.65

Sex 16F:53M 22F:50M χ2(1) = 0.97 0.32

Hemisphere 40R:29L 35R:37L χ2(1) = 1.24 0.27

Brain pH ± s.d. 6.63 ± 0.28 6.55 ± 0.28 t(139) = 1.85 0.067

PMI (hours) ± s.d. 27.15 ± 12.31 29.93 ± 14.63 U = 2225.00 0.29

RIN ± s.d. 7.73 ± 0.79 7.85 ± 0.83 t(139) = 0.92 0.36

Age (years) at
onset ± s.d.

− 22.53 ± 6.15 − −

Duration of illness
(years) ± s.d.

− 24.54 ± 12.50 − −

Chlorpromazine
mean equivalent
daily dose
(mg) ± s.d.

− 616.03 ± 502.71 − −

PMI, postmortem interval; RIN, RNA integrity number.
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TABLE 2 | Comparison of demographic variables between inflammation subgroups.

Demographics Control low
(n = 57)

Control high
(n = 12)

Schizophrenia
low (n = 42)

Schizophrenia
high (n = 30)

F/χ 2/U/t P-value

Age in years ± s.d. 48.53 ± 11.49 45.58 ± 15.33 46.38 ± 13.57 48.03 ± 10.84 F(3,137) = 0.36 0.78

Sex 12F:45M 4F:8M 15F:27M 7F:23M χ2(3) = 3.09 0.38

Hemisphere 33R:24L 7R:5L 18R:24L 17R:13L χ2(3) = 2.58 0.46

Brain pH ± s.d. 6.69 ± 0.25 6.37 ± 0.31 6.67 ± 0.22 6.37 ± 0.27 F(3,137) = 15.17 1.41E-8

PMI (hours) ± s.d. 27.45 ± 12.30 25.75 ± 12.76 31.07 ± 11.68 28.22 ± 18.06 χ2(3) = 3.56 0.31

RIN ± s.d. 7.71 ± 0.75 7.86 ± 0.98 7.92 ± 0.86 7.77 ± 0.78 F(3,137) = 0.58 0.63

Age (years) at onset ± s.d. − − 23.45 ± 6.93 21.23 ± 4.65 U = 515.50 0.19

Duration of illness (years) ± s.d. − − 22.93 ± 13.31 26.80 ± 11.09 t(70) = −1.30 0.20

Chlorpromazine mean equivalent daily dose (mg) ± s.d. − − 515.34 ± 428.24 757.00 ± 569.38 U = 463.5 0.057

PMI, postmortem interval; RIN, RNA integrity number.

consistent with the acidotic effects of inflammation in tissue
(Erra Diaz et al., 2018).

RNA Extraction, Complementary DNA
Synthesis, and Quantitative PCR
Total RNA was extracted from fresh frozen DLPFC postmortem
brain tissue using the TRIzol (Invitrogen, Carlsbad, CA,
United States) extraction method. RNA concentration
was determined by Agilent Technologies 2100 Bioanalyzer.
Complementary DNA (cDNA) synthesis was performed from
1 µg total RNA per case using SuperScript III First-Strand
Synthesis kit (Life Technologies, Scoresby, VIC, Australia).
The mRNA expression of microglia, astrocyte, macrophage,
cytokine and chemokine transcripts were measured by reverse
transcriptase-quantitative PCR using Fluidigm BioMarkTM

HD system (South San Francisco, CA, United States) at
the Ramaciotti Centre for Genomics (Kensington, NSW,
Australia) using pre-designed Taqman Gene Expression
Assays that included: (1) Ionized calcium binding adaptor
molecule 1 (IBA1) (Hs00741549_g1), (2) integrin alpha X
(ITGAX/CD11c) (Hs00174217_m1), (3) hexosaminidase subunit
beta (Hexb) (Hs01077594_m1), (4) cluster of differentiation
68 (CD68) (Hs00154355_m1), (5) translocator protein
(18kD) (TSPO) (Hs00559362_m1), (6) astrocyte marker
glial fibrillary acidic protein (GFAP) (Hs00909233_m1), (7)
CD163 (Hs00174705_m1), (8) CD64 (Hs00174081_m1), (9)
CD206 (Hs00267207_m1), (10) CD86 (Hs01567026_m1); (11)
IL-10 (Hs00961622_m1), (12) CCL2 (Hs00234140_m1), and (13)
IL-8 (Hs00174103_m1). No template controls and no reverse
transcriptase controls were included in the assays to test for
reagent contamination and for genomic DNA amplification,
respectively. Relative quantity of mRNA expression of each gene
was calculated using 2-11Ct method. First, the 1Ct of each
sample was calculated by subtracting the geometric means of
three housekeeper transcripts [(1) glyceraldehyde 3-phosphate
dehydrogenase (Hs99999905_m1); (2) TATA-binding protein
(Hs00427620_m1); (3) ubiquitin C (Hs00824723_m1)] from
Ct value of the target gene (1Ct = Ct value-geometric mean of
housekeeper transcript Ct value). Then, 11Ct was calculated by
subtracting the average 1Ct of the control from each sample’s

1Ct (11Ct = 1Ct − control average 1Ct). The final relative
mRNA expression for all the samples were calculated by the
formula 2−1 1 Ct .

Statistical Analysis
Dependent variables were tested for normality using
Kolmogorov–Smirnov test. Independent samples t-tests
(for normal data), Mann-Whitney U tests (for non-normal
data), and Chi-square tests were used to detect differences
in demographic characteristics between diagnostic groups.
Analysis of variance (ANOVA) and Chi-square tests were
used to detect differences in demographic characteristics
among inflammation subgroups. Independent samples t-tests
and Mann-Whitney U tests were used to compare the age
at onset, duration of illness and chlorpromazine (CPZ)
equivalent daily dose between schizophrenia low and high
inflammation subgroups.

For mRNAs of interest, each transcript (expressed as 2-
11Ct) were tested for normality using Shapiro–Wilk test and
Kolmogorov–Smirnov test. Normal Q-Q plots were also used
to determine whether the data was normally distributed. If the
distribution of the data was not normal, log transformation
was conducted. Homogeneity of variance was tested using
Levene’s test. Outliers were removed if the normalized expression
value fell beyond two standard deviations of the means for
the group/subgroup. Pearson’s correlations were performed
between demographic variables (age, PMI, brain pH, and RIN)
and each mRNA of interest (either normalized data or log
transformed data) to identify potential covariates for subsequent
analyses. If a normalized transcript was correlated with any
demographic variable [excluding brain pH (Hagihara et al.,
2018)], a two-way analysis of covariance (ANCOVA) was
performed to examine the effect of diagnosis, inflammation
and the interaction of diagnosis and inflammation on the gene
expression [all correlations (Pearson’s r) and p-values shown
in Supplementary Table 3]. The homogeneity of regression
slopes assumption was confirmed by analyzing the interaction
between the covariate and grouping variables (p > 0.05). If
no covariates were identified, data were analyzed using two-
way ANOVA. If data was extremely skewed based on normality
testing and normal Q-Q plot (CCL2 mRNA), non-parametric
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factorial ANOVA (aligned rank transformation analysis of
variance) was performed using align-and-rank transformed data
(Wobbrock et al., 2011). Pairwise comparison was conducted by
a Mann–Whitney U test.

If interaction effect (diagnosis or inflammation) reached
statistical significance (p < 0.05), pairwise post hoc comparisons
(main effects) were performed and, Fisher’s least significant
difference (LSD, for interactions) post hoc tests were performed.
Since our priori hypothesis was that there may be changes
specific to high inflammation schizophrenia as compared to
high inflammation controls, we performed pairwise comparison
between these two groups even if the interaction effect did not
reach statistical significance.

For correlation analyses of microglia, macrophage and
astrocyte markers, Pearson’s correlation was performed
between levels for each of the following transcripts:
Hexb, CD11c, IBA1, CD68, CD163, CD64, CD86, CD206,
GFAP, and TSPO. Since the correlation analyses were
exploratory, all samples were included in the analysis. We
also performed correlation analysis between our microglial
marker IBA1 mRNA and data from the Stanley Neuropathology
Consortium Integrative Database [Array Collection deposited
by Clare Beasley IBA1+ cells in the frontal cortex1 (Kim
and Webster, 2010)]. The data was based on IBA1+ cell
density in all six layers in the cortex gray matter. We
calculated the average IBA1+ cell density per total DLPFC
by accounting for the differential contribution of each layer
in human cortex to the total surface area of the cortex
(He et al., 2017) (average cell density = Layer 1 density
[L1]∗12.3% + L2∗6.13% + L3∗35.93% + L4∗6.41% + L5∗14.59%
+ L6∗24.96%) (n = 60). Pearson’s correlation analysis was
performed on IBA1 mRNA levels (only the cases with IBA
mRNA who also had IBA1+ cell density in frontal cortex gray
matter were included, n = 55).

To determine the relationships between cell markers and
inflammatory markers, we performed stepwise multiple linear
regression analysis, where the criteria for a predictor to enter
into the analysis is based on partial F test p-value ≤ 0.05,
and to be removed from the analysis is p ≥ 0.10. All the
cases were included in this analysis. The final model was
determined when no more predictors could be entered or
removed from the model. First, to determine whether TSPO
mRNA was more related to microglia (IBA1), astrocyte (GFAP),
or macrophage (CD163) marker levels, the regression model
included TSPO as the response variable, and IBA1, GFAP, and
CD163 levels as predictors. Second, to determine whether CD163
mRNA was more likely to correlate with pro-inflammatory,
anti-inflammatory macrophage marker or microglia mRNAs,
we performed stepwise linear regression analysis on CD163 as
the response variable and CD64, CD206, and IBA1 levels as
predictors. Thirdly, to test which macrophage type was more
likely to associate with macrophage chemokine CCL2, multiple
macrophage markers including CD163, CD64, CD68, CD206,
and CD86 were used as predictors in the linear regression model
with CCL2 levels as the response variable.

1http://sncid.stanleyresearch.org/

All statistical analyses and data visualization were performed
using R (version 4.0.2) and Prism (v8, GraphPad, La Jolla,
CA, United States).

PsychENCODE Consortium RNA
Sequencing Data Analysis
We used postmortem-brain DLPFC RNAseq data in
PsychENCODE Consortium [PubMed ID: 30545856, doi:
doi.org/10.7303/syn1208024] to test two things (1) if the
diagnostic changes in inflammatory mRNAs we detected
in schizophrenia could be reproduced and (2) if similar
diagnostic changes could be detected in bipolar disorder
and autism telencephalon. The samples are collected from
the frontal cortex and temporal cortex. Low expressed genes
with transcripts per million (TPM) < 0.1 in more than 25%
samples were filtered and mitochondria genes were removed.
Samples with standardized network connectivity Z scores < 2
were included–two samples were defined as outlier samples
and removed. The samples with discordant sex information
were also removed. In total, 25,774 genes and 2,160 samples
were retained. The data included 1,232 healthy controls, 593
schizophrenia samples, 253 bipolar disorders samples, and
82 autism samples. We identified factors such as age, sex,
batches, PMI, RIN, brain bank, brain region, and sequencing-
related principal components as known covariates. Hidden
covariates were identified by surrogate variable analysis (SVA).
Count matrix were corrected for library size using Trimmed
Mean of the M-values (TMM) normalization in edgeR and
was log-transformed. Differentially expressed transcripts
were calculated with the linear mixed-effects model using
nlme packages in R. The unknown and hidden covariates
were included in the model. The p-values were corrected by
Benjamini–Hochberg method.

RESULTS

Microglial mRNA Markers Are
Unchanged or Reduced in High
Inflammation Schizophrenia
We measured gene expression of four microglial markers in the
DLPFC: IBA1, Hexb, CD11c, and CD68. We found that neither
diagnosis [IBA1: F(1,128) = 1.04, p = 0.31; Hexb: F(1,129) = 0.19,
p = 0.67] or inflammatory status [IBA1: F(1,128) = 1.27, p = 0.26;
Hexb: F(1,129) = 0.122, p = 0.73] had a significant main effect
on IBA or Hexb mRNA levels (Figures 1A,B). We found no
interaction effect (diagnosis × inflammation) for these mRNAs
[IBA1: F(1,128) = 5.13E-04, p = 0.98; Hexb: F(1,129) = 0.477,
p = 0.49]. There was no significant difference between SCZ-high
and CON-high subgroups (IBA1: p = 0.59, Hexb: p = 0.35).
We confirmed that our IBA1 mRNA levels were positively
correlated with IBA1+ cell density defined morphologically
as microglia reported previously [Array Collection deposited
by Clare Beasley IBA1+ cells in the frontal cortex (see text
foot note 1) (Kim and Webster, 2010)]. In the prefrontal
cortex of the same cases, IBA1 mRNA correlated with total
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FIGURE 1 | Microglia-related gene expression in DLPFC across inflammation
subgroups. (A,B) There was no significant difference between diagnostic
groups or inflammation groups in IBA1 and Hexb expression. (C) There was
an interaction effect of diagnosis and inflammation in CD11c expression
[F(1,130) = 5.27, p = 0.023], that was also significantly decreased in
schizophrenia high inflammation subgroup compared to all other inflammation
subgroups. (D) CD68 expression was elevated in high inflammation group
(p = 0.039) compared to low inflammation group. Error bars depict standard
error of the mean. *p < 0.05, ***p < 0.001.

IBA1+ microglia density (r = 0.27, p = 0.043), but did
not correlate with ramified or non-ramified IBA1+ microglia
densities (p > 0.05).

In contrast to pan microglial markers, CD11c gene
expression was significantly decreased in the schizophrenia
group compared to controls overall [main effect of diagnosis:
F(1,130) = 12.95, p = 4.54E-04] (Figure 1C). We found no
significant inflammation effect on CD11c mRNA levels
[main effect of inflammation: F(1,130) = 0.17, p = 0.62]. We
also detected a diagnosis × inflammation interaction effect
on CD11c expression [F(1,130) = 5.27, p = 0.023]. When
comparing inflammation subgroups, CD11c mRNA levels were
decreased in the SCZ-high subgroup (SCZ-high) compared to
all of the other three groups [CON-low (p < 0.001), CON-
high (p < 0.001), and SCZ-low (p = 0.025) (Figure 1C)].
CD68 mRNA showed no significant change by diagnosis
[F(1,128) = 0.20, p = 0.66], but was significantly higher in
high inflammation individuals compared to low inflammation
individuals [main effect of inflammation: F(1,128) = 4.34,
p = 0.039] (Figure 1D). There was no diagnosis × inflammation

interaction effect on CD68 expression [F(1,128) = 0.017,
p = 0.90]. There was no significant difference in CD68
expression between SCZ-high and CON-high subgroups
(p = 0.86).

Transcripts Expressed by Microglia,
Astrocytes, and/or Macrophages Are
Elevated in High Inflammation
Schizophrenia Subgroup
TSPO mRNA levels in the DLPFC did not significantly
differ in people with schizophrenia compared to controls
overall [main effect of diagnosis: F(1,132) = 1.59, p = 0.21],
but TSPO transcript was greatly elevated in the context
of high inflammation compared to the low inflammation
[main effect of inflammation: F(1,132) = 23.62, p = 3.28E-
06]. There was no diagnosis × inflammation interaction effect
on TSPO mRNA levels [F(1,132) = 0.067, p = 0.80]. There
was no significant difference between SCZ-high and CON-
high subgroups (p = 0.56) (Figure 2A). In contrast, GFAP
mRNA was decreased in schizophrenia compared to controls
overall [main effect of diagnosis: F(1,127) = 4.61, p = 0.034],
but elevated in high inflammation individuals compared to
low inflammation individuals [main effect of inflammation:
F(1,127) = 38.47, p = 7.21E-09] with no significant interaction
effect [F(1,127) = 1.46, p = 0.23]. There was a decrease in
GFAP mRNA in SCZ-high compared to CON-high subgroup
(p = 0.05) (Figure 2B).

We found mRNA levels of the macrophage marker
CD163 were significantly elevated in schizophrenia cases
compared to control cases [main effect of diagnosis:
F(1,127) = 4.00, p = 0.048], and were also greatly elevated
in individuals with high inflammation compared to those
with low inflammation [main effect of inflammation:
F(1,127) = 24.08, p = 2.78E-06] (Figure 2C). There was
a trend level of diagnosis × inflammation interaction
effect [F(1,127) = 3.48, p = 0.064] on CD163 expression.
Importantly, CD163 mRNA was significantly higher in
the SCZ-high subgroup than the CON-high subgroup
(p = 0.027) (Figure 2C).

Common Microglial Marker TSPO mRNA
Was More Positively Related to
Astrocytic Marker GFAP mRNA Than to
Microglia Marker IBA1 mRNA
Stepwise multiple linear regression analysis on TSPO mRNA
and microglia, astrocyte, and macrophage markers (IBA1,
GFAP, CD163 mRNAs; Figure 3 and Supplementary Table 3)
showed that the best predictors of TSPO in the final model
were GFAP mRNA and IBA1 mRNA, which accounted
for 55% of the variance (adjusted R2 = 0.55) in TSPO
gene expression. The degree to which GFAP mRNA levels
predicted TSPO mRNA levels (β = 0.72, p = 8.32E-25)
was more than 4-fold higher than the degree to which
IBA1 mRNA levels predicted TSPO mRNA levels (β = 0.17,
p = 0.0028). CD163 mRNA was excluded from the model
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FIGURE 2 | Microglia, astrocyte, and macrophage marker mRNA expression and correlations in DLPFC across inflammation subgroups. (A) TSPO mRNA was
elevated in high inflammation group (p < 0.0001) compared to low inflammation group. (B) GFAP mRNA was decreased in schizophrenia compared to controls
(p = 0.05) and was elevated in high inflammation group (p < 0.0001) compared to low inflammation group. (C) CD163 mRNA was elevated in both schizophrenia
group and high inflammation group compared to controls (p < 0.05) and low inflammation group (p < 0.0001), respectively. Schizophrenia high inflammation
subgroup had elevated CD163 mRNA compared to control high inflammation subgroup. Error bars depict standard error of the mean. *p ≤ 0.05, ****p < 0.0001.
Purple lines with * labels comparison between diagnostic groups. Black lines with * labels comparison between inflammation groups (same for all the graphs).

FIGURE 3 | Stepwise regression analysis of TSPO mRNA vs. microglia (IBA1), astrocyte (GFAP), and macrophage (CD163) marker mRNA. The predictors of the final
model were GFAP and IBA1, with GFAP most positively related to TSPO (β = 0.72, p = 8.32E-25).

due to relatively low contribution to the variance (β = 0.051,
p = 0.44).

CD-163 mRNA Levels in the
Schizophrenia Brain Are Associated With
Pro-inflammatory Macrophage Markers
We found no significant differences in M1 macrophage marker
CD64 [F(1,130) = 2.50, p = 0.12] or M2 macrophage marker
CD206 [F(1,129) = 0.12, p = 0.73] gene expression by diagnosis.

However, CD64 mRNA was elevated in the high inflammation
individuals compared to the low inflammation individuals overall
[main effect of inflammation: F(1,130) = 14.82, p < 0.001],
while CD206 expression was not significantly different based
on inflammatory status [F(1,129) = 0.46, p = 0.18]. We detected
a significant diagnosis × inflammation interaction effect on
CD64 mRNA [F(1,130) = 4.27, p = 0.041] but not CD206
mRNA [F(1,129) = 1.83, p = 0.18] (Figures 4A,B). CD64
mRNA was significantly increased in the SCZ-high subgroup
compared to the CON-low and SCZ-low subgroups (p < 0.0001),
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FIGURE 4 | Comparison of M1 (CD64) and M2 (CD206) macrophage marker mRNA expression across inflammation subgroups. (A) CD64 mRNA expression was
elevated in high inflammation group compared to low inflammation group [F(1,130) = 14.916, p = 1.85E-04]. There was an interaction effect of diagnosis and
inflammation [F(1,130) = 4.268, p = 0.041]. CD64 mRNA was elevated in schizophrenia high inflammation subgroup compared to control and schizophrenia low
inflammation subgroups (p < 0.0001) and control high inflammation subgroup (p < 0.05). (B) CD206 mRNA expression was not significantly changed across
inflammation subgroups. (C) The ratio of CD64 and CD206 expression was significantly increased in high inflammation group compared to low inflammation group
[F(1,131) = 17.87, p = 4.4E-05]. There was an interaction effect of diagnosis and inflammation [F(1,131) = 4.267, p = 0.041]. The CD64/CD206 ratio was significantly
elevated in schizophrenia high inflammation subgroup compared to control and schizophrenia low inflammation subgroups (p < 0.0001) and control high
inflammation subgroup (p < 0.05). (D) Regression analysis of CD163 vs. CD64, CD206, and IBA1 mRNA. Macrophage marker CD163 mRNA was positively related
to CD64 and CD206 mRNA, while negatively related to IBA1 mRNA. Error bars depict standard error of the mean. *p < 0.05, **** p < 0.0001.

and also compared to the CON-high subgroup (p = 0.036)
(Figure 4A). CD206 did not differ between CON-high and SCZ-
high subgroups (p = 0.73). The ratio of CD64/CD206 mRNA did
not differ by diagnosis [F(1,131) = 2.12, p = 0.15], but the ratio was
significantly higher in high inflammation individuals compared
to the low inflammation individuals overall [main effect of
inflammation: F(1,131) = 17.87, p = 4.4E-05] (Figure 4C). There
is a significant interaction effect of diagnosis × inflammation on
the ratio of CD64/CD206 mRNA [F(1,131) = 4.27, p = 0.041] that
mimicked the analysis of CD64 alone. The ratio of CD64/CD206
mRNA was significantly increased in the SCZ-high subgroup
compared to the CON-low and SCZ-low subgroups (p < 0.0001),
and also compared to the CON-high subgroup (p = 0.047).
To assess the potential phenotype of CD163+ macrophages, we
performed regression analysis on CD163 mRNA vs. the putative
macrophage markers, CD64, CD206, and microglia marker IBA1
mRNAs. We found that all three markers contributed to the
final model (adjusted R2 = 0.40), where CD64 mRNA (β = 0.74,

p = 3.03E-13) and CD206 mRNA (β = 0.32, p = 0.00020)
were positively related to CD163 mRNA, while IBA1 mRNA
(β = −0.41, p = 0.00028) was negatively related to CD163
(Supplementary Table 3 and Figure 4D).

Anti-inflammatory Macrophage Markers
Are Either Decreased or Unchanged in
Schizophrenia
In terms of the M2b macrophage surface marker mRNA,
CD86, we found decreased expression in schizophrenia
compared to controls overall [main effect of diagnosis:
F(1,134) = 4.79, p = 0.030]. There were no effect of inflammation
[main effect of inflammation: F(1,134) = 1.98, p = 0.16] or
diagnosis × inflammation interaction [F(1,134) = 1.49, p = 0.22]
on CD86 mRNA levels. In comparing the high inflammation
subgroups directly, CD86 mRNA was significantly lower in
schizophrenia than controls (p = 0.048) (Figure 5A). For the
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FIGURE 5 | Comparison of M2b macrophage related mRNA expression in
inflammation subgroups. (A) M2b macrophage surface marker CD86
expression was decreased in schizophrenia compared to the controls
[F(1,134) = 4,791, p = 0.030]. CD86 mRNA expression was lower in
schizophrenia high inflammation subgroup compared to control high
inflammation subgroup (p < 0.05). (B) Anti-inflammatory cytokine IL-10
expression was elevated in high inflammation group compared to low
inflammation group (p < 0.01). Error bars depict standard error of the mean.
*p < 0.05, ** p < 0.01.

anti-inflammatory cytokine, IL-10 gene expression did not
differ between diagnostic groups [main effect of diagnosis:
F(1,124) = 0.47, p = 0.50]. However, IL-10, mRNA expression
was elevated in high inflammation individuals compared to low
inflammation individuals overall [main effect of inflammation:
F(1,124) = 9.34, p = 0.0027] with no diagnosis × inflammation
interaction effect [F(1,124) = 2.45, p = 0.12] (Figure 5B). IL-10
mRNA levels were did not differ between CON-high and
SCZ-high subgroups (p > 0.19) (Figure 5B).

Increased Macrophage Attractant CCL2
mRNA in Schizophrenia Is Associated
With CD163 mRNA
We found that mRNA levels of macrophage chemoattractant,
CCL2, were elevated in schizophrenia compared to controls
[main effect of diagnosis: F(1,130) = 16.71, p = 7.58E-05], and
were increased in high inflammation individuals compared to
low inflammation individuals [main effect of inflammation:
F(1,130) = 32.08, p = 9.05E-08]. There was a significant
diagnosis × inflammation interaction effect on CCL2 expression
[F(1,130) = 17.37, p = 5.57E-05], where CCL2 mRNA was more
significantly increased in SCZ-high vs. SCZ-low (p = 1.16E-07)
than in CON-high vs. CON-low (p = 9.38E-06) (Figure 6A).
CCL2 mRNA was also significantly elevated in SCZ-high
compared to CON-low (p = 6.84E-07) and in CON-high
compared to SCZ-low subgroup (p = 9.04E-07), but did not
differ between CON-high and SCZ-high subgroups (p = 0.68)
or between CON-low and SCZ-low subgroup (p = 0.48). As
predicted, we found CCL2 mRNA and CD163 mRNA levels were
moderately positively correlated in the whole cohort (r = 0.455,
p = 6.27E-08) (Figure 6B). Meanwhile, we also found a moderate
positive correlation between CCL2 and GFAP mRNA expression
(r = 0.54, p = 5.35E-12).

Contrary to our expectations, we found that mRNA levels of
the chemokine secreted by macrophages, IL-8, were decreased
in schizophrenia compared to controls overall [main effect of
diagnosis: F(1,127) = 14.28, p = 2.41E-04], but that IL-8 mRNA
was significantly elevated in high inflammation individuals
compared to low inflammation individuals overall [main effect
of inflammation: F(1,127) = 30.89, p = 1.54E-07] with no
diagnosis × inflammation interaction effect [F(1,127) = 2.40,
p = 0.12]. IL-8 mRNA was significantly decreased in SCZ-high
compared to CON-high subgroups (p = 0.0024) (Figure 6C). IL-8
mRNA and CD163 mRNA were moderately positively correlated
overall (r = 0.34, p = 3.96E-05). However, we found these two
genes were more positively correlated in CON-high (r = 0.72,
p = 0.0086) and were not correlated in the SCZ-high subgroup
(r = −0.0014, p = 0.99) (Z = 2.35, p = 0.018).

Chemokine CCL2 mRNA Was Positively
Correlated With Pan and
Pro-inflammatory Macrophage Markers
and Negatively Correlated With
Anti-inflammatory Macrophage Markers
in the DLPFC
We performed stepwise multiple linear regression analysis
for the macrophage chemoattractant, CCL2 mRNA, and the
macrophages markers including CD68, CD163, CD64, CD206,
and CD86 mRNAs (Supplementary Table 3 and Figure 7). The
final model predictors included all the macrophage markers and
accounted for 56% of CCL2 mRNA variance (adjusted R2 = 0.56).
Macrophage markers CD64 mRNA (β = 0.51, p = 5.68E-08),
CD163 mRNA (β = 0.28, p = 0.00016), and CD68 mRNA
(β = 0.33, p = 0.0013) were positively related to CCL2 mRNA,
while CD206 mRNA (β = −0.37, p = 2.46E-07) and CD86 mRNA
(β = −0.32, p = 0.00038) were negatively related to CCL2 mRNA.

Relationships of Transcripts of Interest
and/or Inflammatory Status to Clinical
Variables
Brain pH was lower in patients aligning with findings of
a recent meta-analysis (Hagihara et al., 2018), although the
diagnostic comparison did not quite reach significance in our
study. However, brain pH was significantly decreased in both
CON-high and SCZ-high subgroups compared to both low
inflammation subgroups. Age at onset and duration of illness
were not significantly different between SCZ-high and SCZ-
low subgroups. The mean daily dose of chlorpromazine (CPZ)
equivalent was higher in SCZ-high than in SCZ-low subgroup
and this difference reached a trend level of statistical significance
(p = 0.057). In addition, we found that duration of illness
was negatively correlated with microglia markers IBA1 mRNA
(r = −0.39, p = 0.015) and CD11c mRNA (r = −0.29, p = 0.017),
and with anti-inflammatory myeloid markers CD206 mRNA
(r = −0.27, p = 0.024) and CD86 mRNA (r = −0.36, p = 0.002).
Duration of illness was also positively correlated with the
astrocyte marker GFAP mRNA (r = 0.31, p = 0.008). Age at
onset was negatively correlated with CD163 mRNA (r = −0.27,
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FIGURE 6 | Macrophage-related chemokine gene expression in DLPFC comparison across inflammation subgroups. (A) Macrophage chemokine CCL2 mRNA was
elevated in schizophrenia compared to controls and in high inflammation groups compared to low inflammation groups (both p < 0.0001). There was a significant
diagnosis × inflammation interaction effect on CCL2 expression [F(1,130) = 17.37, p = 5.57E-05]. (B) Correlations between CD163 and CCL2 mRNA expression (log
transformed data). (C) IL-8 mRNA was decreased in schizophrenia compared to controls (p < 0.001) and was elevated in high inflammation group compared to low
inflammation group (p < 0.0001). IL-8 mRNA was decreased in schizophrenia high inflammation subgroup compared to control high inflammation subgroup
(p < 0.01). **p < 0.01, ***p < 0.001, ****p < 0.0001.

p = 0.023). Lifetime CPZ equivalents which were related to
duration of illness were negatively correlated with CD11c mRNA
(r = −0.32, p = 0.007), CD206 mRNA (r = −0.33, p = 0.005) and
CD86 mRNA (r = −0.30, p = 0.010), but positively correlated with
GFAP mRNA (r = 0.26, p = 0.028) and CCL2 mRNA (r = 0.40,
p = 6E-04). Daily CPZ equivalents (average daily dose) were
significantly positively correlated with CCL2 mRNA (r = 0.34,
p = 0.043).

PsychENCODE Consortium RNAseq
Analysis Confirmed Many
Inflammation-Related Changes and
Showed Diagnostic Specific Changes in
Schizophrenia
In PsychENCODE Consortium data (Table 3), we found
that one inflammation related transcript, SERPINA3, was
elevated in all three psychiatric disorders, schizophrenia
(log2FC = 0.93, FDR = 1.62E-10), autism spectrum disorder

(ASD) (log2FC = 1.15, FDR = 0.059) and bipolar disorder
(BD) (log2FC = 0.53, FDR = 0.044) compared to controls.
Although this SERPINA3 mRNA increase in ASD (FDR = 0.059)
did not reach statistical significance and was near the level
of statistical significance in BD (FDR = 0.044) compared to
controls. In support of the inflammatory changes being stronger
in schizophrenia, we found that IL-6 mRNA (log2FC = 0.47,
FDR = 0.0021) was elevated in schizophrenia compared to
controls, but was not significantly changed in either Autism or
Bipolar Disorder. We identified a reduction in the microglial
marker IBA1 (log2FC = −0.19, FDR = 0.014) and confirmed our
reduction of CD11c mRNA (log2FC = −0.30, FDR = 2.03E-08) in
schizophrenia compared to the controls, but again these changes
were not identified in BD or in ASD (FDR > 0.05). Reactive
astrocyte marker GFAP mRNA (log2FC = 0.14, FDR = 0.0016)
was elevated in schizophrenia and Autism groups compared
to control. Whereas, the macrophage marker CD163 mRNAs
(log2FC = 0.35, FDR = 5.93E-04) was increased specifically in
schizophrenia. Additionally, both the M2b macrophage marker
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FIGURE 7 | Stepwise regression analysis model of CCL2 vs. macrophage markers (CD64, CD163, CD68, CD206, CD86). CCL2 mRNA was positively related to
CD64, CD163, and CD68, whereas it was negatively related to CD206 and CD86.

[(CD86) (log2FC = −0.17, FDR = 0.024)] and the M2 related
cytokine [(IL-10) (log2FC = −0.20, FDR = 0.047)] mRNAs were
decreased in schizophrenia compared to the controls, but did not
differ in the other diagnostic groups. Other mRNA levels were
unchanged across diagnostic groups (FDR > 0.05). Considering
all transcripts tested, we found 63% [SERPINA3, IL1B, Hexb,
CD11c, CD68, TSPO, CD163, CD64, CD206, CD86 (unchanged
genes included)] of the results matched our results of diagnosis
effect reported in this current study.

DISCUSSION

Inconsistencies regarding microglial activation in schizophrenia
may arise due to the shared expression of several “microglia”
markers across microglia, brain-resident perivascular
macrophages and peripherally derived macrophages. In an
attempt to disentangle the contribution of microglia vs.
macrophages to neuroinflammation in schizophrenia, we
measured multiple transcripts that are typically associated
with microglia (Hexb, CD11c, IBA1, CD68), pro-inflammatory
macrophages (CD64) anti-inflammatory macrophages (CD206,
M2b: CD86, IL-10), the macrophage scavenger receptor CD163,
and immune cell chemokines (CCL2, IL-8) (Figure 8). Clear
differences in the direction of change in transcripts between
high and low inflammation schizophrenia and high and low

inflammation control groups indicate that macrophage cell
populations are contributing more to the inflammatory signal
in the cortex of people with schizophrenia as compared to
controls. Although we acknowledge that there is some degree
of overlap in expression even with these “cell-specific” or
“state-specific” markers are used (Holness and Simmons, 1993;
Liu et al., 2008; Ishizuka et al., 2012). CD163 in the normal
brain mainly labels border-associated macrophages (BAMs)
including perivascular macrophages (Kim et al., 2006) which do
not express high levels of IBA1, while microglia do (Pedragosa
et al., 2018). Furthermore, cells double immune-labeled with
IBA1 and CD163 have distinct morphology, density and
anatomical positions as compared with microglia within the
human brain (Kim et al., 2006; Swanson et al., 2020). Based on
the mRNA levels of multiple markers for microglia, astrocytes
and macrophages (Table 4), our data indicate the immune
signal found in the cortex in schizophrenia to be more related to
macrophages rather than microglia (Figure 8). Furthermore, this
robust increase in CD-163 mRNA is not detected to two other
related psychiatric illnesses, autism and bipolar disorder, in the
large transcriptomics database from PsychENCODE.

Overall, we found support for lower-than-normal levels of
microglial transcripts in the prefrontal cortex of patients with
schizophrenia (no increase in IBA1 or Hexb mRNA, reduced
CD11c mRNA), in line with putative microglial quiescence and
aligning with previous reports of comparable numbers of cortical
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TABLE 3 | Comparison of inflammation, microglia, macrophage, and astrocyte marker mRNA levels expression to PsychENCODE Consortium RNAseq data.

Gene ID Gene
type

Gene name CON
Mean ± SE

SCZ
Mean ± SE

P-value ASD
log2FC

SCZ
log2FC

BD log2FC ASD
P-value

SCZ
P-value

BD
P-value

ASD FDR SCZ FDR BD FDR

ENSG00000196136 Protein
coding

SERPINA3 1.40 ± 0.23 4.34 ± 0.95 0.01 1.154682 0.932726 0.534707 0.004154 1.14E-13 0.001707 0.059019 1.62E-10 0.043636

ENSG00000136244 Protein
coding

IL6 2.31 ± 0.44 5.30 ± 1.06 0.08 0.464269 0.465058 0.07479 0.226546 0.000138 0.659473 0.539608 0.002082 0.874141

ENSG00000125538 Protein
coding

IL1B 1.21 ± 0.13 1.49 ± 0.20 0.41 0.749573 0.113359 0.237998 0.022091 0.261783 0.083539 0.155468 0.485372 0.350419

ENSG00000204472 Protein
coding

IBA1/AIF1 1.27 ± 0.11 1.13 ± 0.08 0.31 −0.083969 −0.19176 −0.17081 0.672116 0.001694 0.038942 0.871931 0.013903 0.238165

ENSG00000049860 Protein
coding

HEXB 1.19 ± 0.15 0.96 ± 0.07 0.67 0.039163 0.005994 −0.00842 0.246838 0.585525 0.588424 0.563571 0.76967 0.840764

ENSG00000140678 Protein
coding

ITGAX/CD11c 1.12 ± 0.07 0.84 ± 0.05 4.54E-04 0.142535 −0.30491 −0.13705 0.335824 7.55E-11 0.033545 0.653789 2.03E-08 0.221272

ENSG00000129226 Protein
coding

CD68 1.08 ± 0.06 1.05 ± 0.05 0.66 0.360087 −0.06516 −0.09047 0.073579 0.29583 0.2882 0.29905 0.523239 0.626372

ENSG00000100300 Protein
coding

TSPO 1.01 ± 0.05 1.04 ± 0.05 0.21 0.168808 0.046 0.05867 0.03077 0.073635 0.109223 0.187817 0.214385 0.398381

ENSG00000131095 Protein
coding

GFAP 1.08 ± 0.07 1.05 ± 0.06 0.034 0.327268 0.14173 0.064309 0.003448 9.47E-05 0.20907 0.052738 0.001564 0.544286

ENSG00000177575 Protein
coding

CD163 1.18 ± 0.14 1.56 ± 0.16 0.048 0.488340 0.34719 0.036478 0.06909 2.76E-05 0.744658 0.289608 0.000593 0.912843

ENSG00000150337 Protein
coding

FCGR1A/CD64 1.20 ± 0.10 1.49 ± 0.14 0.12 0.478625 0.135682 0.062625 0.03739 0.055789 0.51626 0.208711 0.177603 0.798713

ENSG00000120586 Protein
coding

MRC1/CD206 1.13 ± 0.07 1.27 ± 0.10 0.73 −0.821796 −0.20504 −0.3672 0.085554 0.182241 0.08953 0.325493 0.387505 0.362222

ENSG00000114013 Protein
coding

CD86 1.20 ± 0.08 1.03 ± 0.06 0.030 0.015427 −0.17008 −0.12964 0.933679 0.003465 0.106383 0.978595 0.024013 0.393482

ENSG00000136634 Protein
coding

IL10 1.38 ± 0.19 1.34 ± 0.11 0.50 0.306460 −0.20326 −0.14929 0.187675 0.008695 0.178123 0.492392 0.047408 0.503556

ENSG00000108691 Protein
coding

CCL2 1.18 ± 0.11 2.43 ± 0.48 7.58E-05 0.311869 0.159638 0.176239 0.329127 0.105662 0.189378 0.647036 0.273516 0.518838

ENSG00000169429 Protein
coding

IL8 1.25 ± 0.13 1.13 ± 0.16 2.41E-04 0.216911 −0.19623 −0.19385 0.522062 0.065516 0.188607 0.788986 0.198596 0.517913

Column 1: Gene ID, gene type, and gene name; Column 2: Summary of mRNA levels and comparison p-value between schizophrenia and controls, p-values < 0.05 were highlighted in red; Column 3–5: Summary
of mRNA levels from PsychENCODE Consortium RNAseq data in autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BPD) compared to normal controls including log2 fold change (log2FC),
p-value, and false discovery rate (FDR), FDR < 0.05 was highlighted in bold.
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FIGURE 8 | Comparison of inflammation conditions in control and schizophrenia (Hypothesis diagram). During inflammation, astrocytes may upregulate the
expression of TSPO and GFAP in both controls and schizophrenia. Microglia marker IBA1 and Hexb expression remain the same in control and schizophrenia high
inflammation conditions, while CD11c expression was elevated in controls but decreased in schizophrenia. Meanwhile chemokine CCL2 level was more elevated in
schizophrenia during inflammation which may promote more monocyte infiltration and differentiation into pro-inflammatory macrophages (CD64). In contrast, in
controls, the macrophages are more likely to maintain a balance between pro- and anti- inflammatory characteristics, with M2b macrophage marker CD86 elevated.
In general, there are more pro-inflammatory signals in high inflammation schizophrenia subgroup, while in the high inflammation control subgroup, pro- and anti-
inflammatory signals are more balanced (Created with BioRender.com) (Red arrows: Expression levels were elevated; more arrows indicate higher levels or more
significantly elevated. Purple arrows: Expression levels were not changed. Blue arrows: Expression levels were decreased).

TABLE 4 | Microglia/Macrophage markers related references.

Gene name Related cell type References

AIF1/IBA1 Microglia Imai et al., 1996

HEXB Masuda et al., 2020

ITGAX/CD11c Benmamar-Badel et al., 2020

CD68 Hendrickx et al., 2017

TSPO Astrocytes Lavisse et al., 2012

GFAP Chiu et al., 1981

CD163 Macrophage Kristiansen et al., 2001

FCGR1A/CD64 M1 Macrophage Thepen et al., 2000

MRC1/CD206 M2 Macrophage Stein et al., 1992

CD86 M2b Macrophage Zhang et al., 2015

IL10

microglia in people with schizophrenia compared to controls
(Bergon et al., 2015; Gandal et al., 2018a,b; Snijders et al.,
2021). Lower levels of microglial markers in schizophrenia was

replicated in PsychENCODE results, with no apparent change
in microglia markers in either autism or bipolar disorder. We
also validated that IBA-1 was largely surveying cells consistent
with microglia morphology, as positive correlations between
our IBA1 mRNA levels and the density of anatomically defined
microglia from SMRI database were detected [Array Collection
Clare Beasley IBA1+ cells in the frontal cortex (see text footnote
1)]. Interestingly, CD11c is expressed in both resting microglia
and activated microglia and is typically up-regulated during
neuroinflammation (Wlodarczyk et al., 2014, 2015), yet we
find decreased CD11c in the cortex of the high inflammation
schizophrenia subgroup relative to inflamed and non-inflamed
controls. CD11c+ microglia are more numerous in aging and
neurodegenerative disease and are a beneficial adaptation to
apoptotic and necrotic neurons via their increased propensity
for phagocytic clearance of dying cells (Wlodarczyk et al.,
2015, 2018; Benmamar-Badel et al., 2020) and amyloid plaques
(Kamphuis et al., 2016). Since neither our diagnostic groups nor
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inflammatory subgroups differed in age, the reduction in CD11c
mRNA that was specific to high inflammation schizophrenia
could reflect a lack of “normal” microglial processes required
to maintain brain homeostasis in the face of elevated cytokines.
Combined with our findings of unchanged Hexb, CD68, and
IBA1 mRNAs in high inflammation schizophrenia, as well as
previous studies reporting no change in microglial cell number
or density in cortical gray matter in schizophrenia (Arnold
et al., 1998; Steiner et al., 2006, 2008), it seems likely that
patients may not have a deficit in microglia numbers but a
deficit in microglial responsiveness. Previous studies have found
decreased expression of microglia-related mRNAs (Gandal et al.,
2018b; Snijders et al., 2021) and decreased TSPO binding via
PET (Collste et al., 2017; Notter et al., 2018) in schizophrenia
compared to controls. This apparent microglial suppression
appears abnormal in people with schizophrenia who also have
evidence of active cortical inflammation.

Given that microglia can become “exhausted” in response
to chronic inflammatory activation (Block and Hong, 2005;
Cherry et al., 2014; Bachiller et al., 2018), we speculate that
there may be heightened microglial reactivity early in the
disease which then transitions into suppression of microglial
responsiveness after several decades (van Berckel et al., 2008;
Doorduin et al., 2009; Bloomfield et al., 2016; Di Biase et al.,
2017; Hafizi et al., 2018; Notter et al., 2018). The possibility
of “microglia exhaustion” is supported by electron microscopy
findings demonstrating increased markers of cellular senescence
within microglia in chronically ill patients compared to age-
matched controls, which were also positively correlated with
duration of illness in patients (Uranova et al., 2021). It is possible
that senescence of microglia is related to the duration of illness
in schizophrenia or to prolonged antipsychotic treatment, which
may promote astrocytic reactivity.

In contrast to the patterns of expression observed for the
microglial transcripts, Hexb, CD11c, IBA1, and CD68, we found
that mRNAs expressed by microglia and/or astrocytes, TSPO,
and GFAP, were elevated in high inflammation schizophrenia
compared to low inflammation schizophrenia, suggesting
astrocytes may be more actively involved in the inflammation
process in schizophrenia. However, the decreased GFAP mRNA
in schizophrenia compared to controls overall could be due
to the greater elevation of GFAP mRNA in high inflammation
controls in our study, which aligns with previous studies of
GFAP expression showing no change or even decreases in
schizophrenia overall (Trepanier et al., 2016). Meanwhile, we did
find a strong positive relationship between TSPO mRNA and
GFAP mRNA. Since TSPO expression can also be expressed by
astrocytes (Lavisse et al., 2012; Notter et al., 2020), and astrocytic
TSPO levels increase before microglial TSPO in Alzheimer’s
disease (Tournier et al., 2020), it is plausible that astrocytes are
the primary source of cortical TSPO in people with schizophrenia
and elevated inflammation.

There were two macrophage marker changes that
demonstrated a clear elevation in high inflammation
schizophrenia compared to high inflammation controls,
and one was the macrophage scavenger receptor CD163 mRNA
and the other was M1 macrophage marker FcγR1/CD64. These

macrophage transcript were robustly increased in the cortex of
the high inflammation schizophrenia subgroup relative to all
other diagnostic/inflammatory subgroups. This indicates that
the cells expressing Hexb, CD11c, IBA1, and CD68 mRNAs are
likely distinct from those expressing CD163/CD64 mRNA (Kim
et al., 2006; Borda et al., 2008). CD163 is expressed in BAMs in
normal conditions, and during inflammation CD163+ BAMs
increase vascular permeability to promote leukocyte infiltration
in ischemic stroke (Pedragosa et al., 2018). There is also evidence
for accumulation of CD163+ macrophages in multiple sclerosis
brains (Zhang et al., 2011) and in the lesions of traumatic
brain injury (Zhang et al., 2012). Since both perivascular and
peripheral macrophages can express CD163 (Borda et al.,
2008; Saylor et al., 2018), the increased levels of CD163 mRNA
reported here and previously (Cai et al., 2018; Purves-Tyson
et al., 2020; Weissleder et al., 2021) in high inflammation patients
could reflect an increase in either or both cell populations. CD64
usually upregulates in pro-inflammatory environment and has
been a target in the treatment of chronic inflammatory diseases
driven by pro-inflammatory macrophages (Akinrinmade et al.,
2017). Peripheral macrophages only enter the brain under
neuroinflammatory conditions (Zhang et al., 2011, 2012), so it
is important to more definitively determine the origin of the
increased CD163/CD64+ macrophages in schizophrenia and
to establish the phenotype of these cells in order to understand
their potential consequences for brain homeostasis in patients.
Although we found CD163 correlated with both M1 and M2
macrophage marker, CD163 expression is not restricted to M2
macrophages (Barros et al., 2013) but can also be expressed in
“M1-like” (Mori et al., 2015). Given that patients with increased
CD163+ cells also have elevated pro-inflammatory cytokine
mRNAs in the prefrontal cortex, it is probable that the phenotype
of CD163+ macrophages found in this study is “M1-like.”

Another transcript CCL2 mRNA, which relates to macrophage
recruitment, demonstrated a clear interaction effect. Like
the macrophage marker, CD163/CD64, this macrophage
chemoattractant was significantly increased in the high
inflammation schizophrenia subgroup relative to all other
subgroups. This finding provides support for the interpretation
that chemotaxis of blood-borne monocytes to the brain is
increased in high inflammation schizophrenia and that this is
what distinguishes it from high inflammation control brain. In
fact, the increase in CCL2 mRNA in these patients was the highest
change of any transcript measured in any subgroup. While we
do not know if the actual number of inflammatory monocytes in
brain (which express high levels of CCR2) in high inflammation
schizophrenia is similar to other neuroinflammatory diseases
including multiple sclerosis, ischemic brain injury, and traumatic
brain injury (Arakelyan et al., 2005; Semple et al., 2010), this
is an important question for future comparative research.
We found positive relationships between CCL2 and CD163
transcripts and the pro-inflammatory macrophage marker
CD64 mRNA, but not between CCL2 transcripts and the anti-
inflammatory macrophage markers CD206 mRNA and CD86
mRNA, which could indicate that these putatively “recruited”
macrophages are more likely to be pro-inflammatory.(Fillman
et al., 2013, 2014). CCL2, coming from either myeloid cells or
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astrocytes (Kim et al., 2014; Moreno et al., 2014), can influence
the differentiation of tissue macrophages and promotes the
production of proinflammatory cytokines including IL-6, IL-1β,
and TNF-α (Yang et al., 2011; Gschwandtner et al., 2019) which
are all elevated in the brains of people with high inflammation
schizophrenia (Fillman et al., 2013, 2014). Reciprocally, pro-
inflammatory cytokines induce the expression of CCL2 (Huang
et al., 2000; Thibeault et al., 2001; Harkness et al., 2003).
Therefore, elevated pro-inflammatory cytokines may promote
CCL2 expression, macrophage transmigration, and macrophage
differentiation into a more pro-inflammatory phenotype and
may propagate a feed-forward cycle of inflammation in the
prefrontal cortex or people with schizophrenia.

We found that CD163 mRNA was negatively related to
microglia marker IBA1 mRNA, consistent with suppression
of microglia with activation and/or infiltration of brain
macrophages (Greenhalgh et al., 2018). Indeed, infiltrating
macrophages can suppress microglia mediated inflammation
and phagocytosis after CNS injury (Greenhalgh et al., 2018).
However, healthy microglia, can limit macrophage infiltration
after acute demyelination (Plemel et al., 2020) and prevent
immune cell invasion in an AD mouse model (Unger
et al., 2018), highlighting the complex interplay between
local (brain-resident) and peripheral immune cells to achieve
both an appropriate level of neuroinflammation and the
resolution of neuroinflammation. Phagocytosis and chemotaxis
are compromised in aged microglia, which may lead to a more
pro-inflammatory microenvironment (Rawji et al., 2016). If the
normal immunoregulatory roles of microglia are impaired then
this could lead to an excess of peripheral immune cells permitted
to enter the brain. Altering the brain microenvironment from
pro-inflammatory to anti-inflammatory may therefore rejuvenate
resident immune cells to maintain healthy brain function in
people with schizophrenia and neuroinflammation. We also
found a strong positive correlation between anti-inflammatory
macrophage markers (CD206 mRNA, CD86 mRNA) and
the microglia marker IBA1 mRNA, again suggesting that
microglia may be benefit from anti-inflammatory macrophage-
derived factors. Our results support findings that show a pro-
inflammatory environment suppresses microglia, while an anti-
inflammatory environment may support microglia homeostasis
(Bachiller et al., 2018; Chagas et al., 2020).

Limitations of the Study
While we have found several very significant changes in glial
and immune cell related transcripts in the cortex of people
with schizophrenia which often show a greater effect size
in high inflammation schizophrenia compared to both low
inflammation schizophrenia and controls, we also acknowledge
that our study has several limitations. Given the large cohort
and the logistical limitations of postmortem research we did
not anatomically map transcriptional changes in cortical cells
using in-situ hybridization or snRNA seq. Thus, we do not
know the source of the mRNA changes, nor do we know the
extent to which macrophage density or origin is changed (Bennett
et al., 2018). Furthermore, we did not measure the protein levels
of the transcripts in our study and future studies would be

needed to compare the protein levels of microglia-, macrophage-,
and astrocyte-associated proteins across inflammatory subgroups
in schizophrenia and controls to bolster our current finding.
Additionally, we did not stratify the PsychENCODE RNA
seq data by low and high inflammation subgroups and we
may find changes in either ASD or BD when analyzing by
inflammation subgroups.

We were also not able to determine the direct effects of long-
term antipsychotics on our transcripts of interest in mammalian
brain, which is an important avenue for future research given
that some of the microglia, macrophage and chemokine (CD11c,
CD86, CD206, and CCL2) mRNA measured correlated with
daily antipsychotic dose in the current study. However, daily
CPZ equivalents were not well-matched between low and high
inflammation schizophrenia subgroups (higher daily dose in high
vs. low inflammation schizophrenia subgroups at a trend level).
Thus, we cannot rule out that some of the inflammatory changes
we detected are the result of antipsychotics; it is also possible that
a more inflamed brain necessitates a higher dose of antipsychotic
treatment. In support that inflammatory changes are not simply
the direct result of treatment, antipsychotics are known to lower
the peripheral levels of cytokines (Miller et al., 2011) and decrease
cytokines in the rodent brain (Sugino et al., 2009; Macdowell
et al., 2013; Purves-Tyson et al., 2019).

CONCLUSION

Here we propose that macrophages, rather than microglia,
may play a more salient role in neuroinflammation in
schizophrenia. We showed that various macrophage markers –
but not microglial markers–are increased in the post-mortem
prefrontal cortex of patients, especially in a subset of people
with schizophrenia that also have high inflammation as
previously described by us. Our results are consistent with
these macrophages being more likely to be pro-inflammatory
in nature, which may disrupt immune homeostasis in the
brain. Moreover, we found that anti-inflammatory macrophage
markers are positively related to microglia markers, suggesting
people with schizophrenia may be lacking a normal macrophage-
microglia relationship. Our work provides an alternative
framework to understand neuroinflammation in schizophrenia.
In future, the relative contributions of different cell types to
neuroinflammatory signaling using single-nuclei RNA-seq could
be used to confirm these possibilities and to anatomically map
changes in pro- and anti-inflammatory transcripts to brain
cells. This may help us to determine how to restore the
imbalance in cellular immune responses in the brains of people
with schizophrenia.
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