

96n aumaes of prevention is worth a pound of cure!

Stephen J. Knohl, MD

Professor of Medicine Vice Chair for Education Residency Program Director Interim Chief of Nephrology

Department of Medicine Upstate Medical University

ALLEY AND ALLEY AL

Disclosures

SET GOALS

Describe who is at risk

2. Explain the chemistry

3. Review management/prevention

Who gets stones?

Epidemiology: Gender and Age

Characteristic	History of kidney s	stones, % (95% CI)	History of passing at least one kidney stone, % (95% Cl)		
	Male	Female	Male	Female	
Age group, yr					
20–29	3.4 (2.1-4.7)	3.4 (2.2-4.7)	3.3 (2.0-4.5)	2.5 (1.3-3.7)	
30–39	6.9 (5.0-8.8)	5.9 (4.5-7.2)	6.5 (4.6-8.5)	5.0 (3.5-6.4)	
40-49	9.8 (7.3-12.3)	7.6 (5.6–9.5)	8.1 (5.9-10.4)	6.4 (4.7-8.1)	
50–59	13.1 (10.3–15.9)	8.1 (5.9–10.3)	11.1 (13.4–19.3)	6.9 (4.8-9.0)	
60–69	19.1 (15.9-22.4)	9.4 (6.6-12.2)	16.3 (13.4–19.3)	8.4 (5.6-11.3)	
70+	18.8 (16.5-21.0)	9.4 (7.5-11.3)	16.0 (13.8-18.3)	7.1 (5.5-8.8)	
All ages	10.6 (9.4–11.9)	7.1 (6.4–7.8)	9.2 (8.1–10.3)	5.9 (5.2-6.6)	

CI = confidence interval.

Scales, CD et. al. EUROPEAN UROLOGY 62 (2012) 160-165

Epidemiology: Race

Characteristic	History of kidney stones, males		History of kidney stones, females		
	Unadjusted, % (95% CI)	Adjusted, % (95% CI)	Unadjusted, % (95% CI)	Adjusted, % (95% CI)	
All groups	10.6 (9.4–11.9)	10.3 (9.2–11.3)	7.1 (6.4–7.8)	6.7 (6.1-7.4)	
Non-Hispanic, white	12.8 (11.3-14.3)	11.8 (10.4–13.2)	7.9 (7.0-8.8)	7.5 (6.7-8.4)	
Hispanic	7.1 (5.7-8.4)	8.8 (7.4–10.2)	5.7 (4.6-6.9)	6.1 (4.9-7.3)	
Non-Hispanic, black	4.5 (3.4–5.6)	4.8 (3.7-5.9)	4.2 (2.7-5.7)	4.2 (2.8-5.6)	
Other race/multiracial	5.6 (2.5-8.8)	5.3 (2.2-8.5)	6.1 (2.7–9.6)	5.6 (2.4-8.8)	
CI = confidence interval.	Scales, (CD et. al. EUROPEAN UR	ROLOGY 62 (2012) 160-165		

Epidemiology: Diseases and Drugs

Epidemiology: Weight

Family History is Important

Increases your risk <u>3-fold</u>!

Recurrence is Likely!

- The chance of becoming a repeat stone-former:
 - 10% at 1 year
 - 35% at 5 years
 - 50% at 10 years

Epidemiology: USA

Epidemiology: Gender and Age

Epidemiology: Race

Characteristic	History of kidney	stones, males	History of kidney stones, females		
	Unadjusted, % (95% CI)	Adjusted, % (95% CI)	Unadjusted, % (95% CI)	Adjusted, % (95% CI	
All groups	10.6 (9.4-11.9)	10.3 (9.2-11.3)	7.1 (6.4-7.8)	6.7 (6.1-7.4)	
Non-Hispanic, white	12.8 (11.3-14.3)	11.8 (10.4-13.2)	7.9 (7.0-8.8)	7.5 (6.7-8.4)	
Hispanic	7.1 (5.7-8.4)	8.8 (7.4-10.2)	5.7 (4.6-6.9)	6.1 (4.9-7.3)	
Non-Hispanic, black	4.5 (3.4-5.6)	4.8 (3.7-5.9)	4.2 (2.7-5.7)	4.2 (2.8-5.6)	
Other raceimultiracial	5.6 (2.5-8.8)	5.3 (2.2-8.5)	6.1 (2.7-9.6)	5.6 (2.4-8.8)	

Epidemiology: Weight

Family History is Important

Increases your risk 3-fold!

Recurrence is Likely!

- The chance of becoming a repeat stone-former:

 10% at 1 year
- 35% at 5 years
- 50% at 10 years

How are stones formed?

The Chemistry of Stone Formation

The Chemistry of Stone Formation

Crystallization will occur

Metastable Range (this means crystallization is a maybe/maybe not)

Crystallization *will not/can not* occur Formation Product

Promoters favor maybe

Inhibitors favor maybe not

Solubility Product /Supersaturation Point

Heterogeneous Nucleation

Promoters favor maybe

Inhibitors favor maybe not

Classification of Kidney Stones

The Chemistry of Stone Formation

Heterogeneous Nucleation

• Promoters favor maybe

• Inhibitors favor maybe not

Classification of Kidney Stones

How are stones managed?

What We do when it Hurts! The "3Ps"

IV isotonic saline – pressure natriuresis NSAIDs – analsegic and smooth muscle relaxant +/- Alpha Blockers – ureteral dilatation Urologic Procedure – intractable pain

Infection \rightarrow Abx + Decompression (stent, nephrostomy) AKI \rightarrow Decompression (stent, nephrostomy) Admit and refer to Urology for stone removal

If unobstructed or obstructed, but not "plugged":
- Distal ureteral stone up to 10mm → Alpha Blocker
- For unpassed stone after 1-2 weeks → Urologic procedure
- For >10mm stone anywhere → Urologic evaluation

Stone-Former Age<18 Stone-Former with Family History

Recurrent Stone-Former

Metabolic Evaluation

Values larger, bolder and more towards red indicate increasing risk for kidney stone formation. See reverse for further details.

Stone Risk Factors / Cystine Screening: Negative (11/09/2005)

DATE	SAMPLE ID	Vol 24	SS CaOx	Ca 24	0x 24	Cit 24	SS CaP	pHq	SS UA	UA 24
03/31/09	5479898	4.65	2.63	326*	35	70	1.51	7:088	0.04	1.018
05/21/08	5371161	3.60	1.07	71	37	54	0.42	7.015	0.05	0.687
08/31/07	\$287506	3.17	1.63	93	41	47	0.63	7.278	0.03	0.626
03/29/07	\$251030	4.80	2.85	259	47	72	1.18	7.139	0.04	1.057
03/28/07	\$255170	4.90	3.10	342	45	73	1.56	7.0.37	0.04	0.919
11/05/05	5157418	4.44	3.23	289	46	67	1.57	Zalac	0.04	0.878
12/04/05	5157749	4.73	3.26	371	43	71	1.76	7.227	0.03	0.887
NORM	L RANGE	0.6 - 4L	6 10	male <250 female <200	20 - 40	male >450 female >550	0.5 - 2	5.8 - 6.2	0 - 1	male <0.800 female <0.750

Dietary Factors

DATE	SAMPLE ID	Na 24	K 24	Mg 24	P 24	Nh4 24	CI 24	Sul 24	UUN 24	PCR	
03/31/09	5479898	217	1.48	130	1.172	22	236	44	14.65	1.1	Ī
05/21/08	3371161	195	130	106	1.020	34	189	47	14.17	1.0	
09/31/07	S287606	182	118:	135	0.878	56	210	46	10.47	0.8	
03/29/07	\$251030	223	96	119	1.171	32	189	62	13.60	1.0	
03/28/07	\$255170	221	1.05	150	1.365	37	198	68	13.88	1.0	ļ
11/05/05	\$157418	214	128:	118	1.343	28	193	60	13.99	1.0	1
11/04/05	\$157749	236	113	164	1.221	26	222	59	12.66	0.9	
NORMA	L RANGE	50-150	20 - 100	30 - 120	0.6 - 1.2	15-60	70 - 250	20-80	6-14	0.8 - 1.4	

KIDNEY STONE

Prevention of Calcium Oxalate Stones

Prevention of Calcium Oxalate Stones

Prevention of Calcium Oxalate Stones

<u>Diet</u> Reduce Oxalate Intake (?)

24-h Urine Lithogenic Risk Profile	DASH (n = 21)	Low Oxalate (n = 20)	Point Estimate of Difference (95% CI)	<i>P</i> for Difference
Oxalate Baseline (mg/d) End of trial (mg/d) Change (mg/d)	49.1 ± 8.5 53.9 ± 14.0 4.8 (−1.8 to 11.4)	51.1 ± 12.5 47.0 ± 13.4 -4.2 (-12.4 to 4.0)	9.0 (-1.1 to 19.1)	0.08
Calcium oxalate supersaturation Baseline End of trial Change	7.16 ± 3.76 4.62 ± 3.11 -2.14 (-3.3 to -0.9)	6.28 ± 5.38 5.38 ± 2.10 −0.90 (−1.9 to 0.1)	-1.24 (-2.80 to 0.32)	0.08

Noori, N et.al. AJKD. 2014. 63(3):456-463

Weight-loss surgeries

The surgical technique known as banding promotes weight loss by restricting the amount of food a person can eat. The Roux-en-Y gastric bypass procedure works by restricting absorption of food in the intestines.

Banding

Rubber band is placed around the upper portion of the stomach to limit food consumption

Roux-en-Y gastric bypass

Surgeons staple off a large section of the stomach and reroute the intestine

Semins et. al. Urology, vol 76: 826-829, 2010.

Prevention of Calcium Oxalate Stones

Laerum, E and S Larsen. Acta Med Scand. 1984. 215:383-389

Prevention of Calcium Oxalate Stones UROCIT-**Blood stream Intestinal tract** Drugs **Thiazide Diuretics Potassium Citrate** Xanthine Oxidase Inhibitors

Pak CY, Fuller C. Ann Intern Med. 1986 Jan;104(1):33 7.

100 Tablets

Prevention of Calcium Oxalate Stones

A Quick Word About...

Calcium Kidney Stones and Osteoporosis

	Group 1	Group 2	Group 3	P Value
Creatinine clearance (mL/min)	99.86 ± 32.28	114.18 ± 45.27	102.94 ± 33.80	.06
Calciuria (mg/24 h)	187.34 ± 106.90	269.98 ± 119.49	207.06 ± 98.12	$.0001^{\dagger}$
Oxaluria (mg/24 h)	28.21 ± 17.65	$\textbf{29.83} \pm \textbf{24.41}$	$\textbf{22.11} \pm \textbf{16.49}$.06
Citraturia (mg/24 h)	1010.75 ± 647.83	537.72 ± 292.64	617.64 ± 315.86	$.0001^{\ddagger}$
Uricosuria (mg/24 h)	540.76 ± 186.20	587.24 ± 222.20	511.91 ± 167.06	.06
Calcium/creatinine 24 h	0.14 ± 0.06	0.18 ± 0.07	0.17 ± 0.07	.0001 [‡]
Calcium/citrate 24 h	0.22 ± 0.14	0.63 ± 0.46	0.56 ± 1.08	.001 [‡]
Phosphate tubular resorption 24 h	82.72 ± 6.96	81.24 ± 8.53	83.63 ± 4.82	.13
Fasting calcium (mg/dL)	9.58 ± 5.07	16.52 ± 8.76	15.14 ± 7.27	$.0001^{\ddagger}$
Fasting oxalate (mg/dL)	1.22 ± 0.69	1.48 ± 1.30	1.11 ± 0.68	.07
Fasting citrate (mg/dL)	50.82 ± 20.43	30.09 ± 15.04	42.32 ± 26.39	.0001*
Fasting uric (mg/dL)	36.65 ± 21.81	31.34 ± 12.70	34.57 ± 18.48	.22
Fasting calcium/creatinine	0.09 ± 0.03	0.16 ± 0.06	0.16 ± 0.05	$.0001^{\ddagger}$

Abbreviation as in Table 1.

* There are significant differences between groups 1 and 2, 2 and 3, and 1 and 3.

[†] There are significant differences between group 2 vs groups 1 and 3 but not between groups 1 and 3.

¹ There are significant differences between group 1 vs groups 2 and 3 but not between groups 2 and 3.

Arrabal-Polo , MA et.al. Urology. 85: 782-785, 2015

Kidney Stones and Bone Fracture

Melton LJ 3rd, et. al, KI, 1998 Feb;53(2):459-64.

Thiazides + Potassium Citrate on BMD of hypercalciuric kidney stone formers

Prevention of Uric Acid Stones

<u>Diet</u> Reduce Purine Intake (?)

Prevention of Uric Acid Stones

Pak, CY et.al. KI, Vol. 30 (1986), pp. 422-428

Prevention of Uric Acid Stones

Who Should Have a Metabolic Evaluation?

Stone-Former Age<18

Stone-

Former

Stone-Former with Family History

Metabolic Evaluation

DRINK!!!

Prevention of Calcium Oxalate Stones

Prevention of Uric Acid Stones

