Celiac Disease
Diana Stuber, MA, RD, CDE
Joslin Diabetes Center
Upstate Medical University
Syracuse, NY
Questions?
What We’ll Talk About

- Definition of celiac disease (CD)
- Other wheat-related conditions
- How common CD is in the US and around the world
- What factors increase risk of developing CD
- How CD is diagnosed
- Treatment of CD
- Potential treatments of CD (research)
Celiac Disease

- Celiac disease is a disease of the small intestinal triggered by the protein gluten (in wheat) and related proteins in barley and rye.
- CD damages the small intestine, leading to malabsorption and to related conditions.
- CD is an autoimmune disease; certain genes increase risk.
- Variable symptoms (intestinal and non-intestinal).
- Only treatment is the consistent and permanent removal of gluten from the diet, the gluten-free diet (GFD).
Celiac Disease

- Gluten proteins are naturally found in wheat
- Make bread products chewy and gives them an elastic quality
- Vital wheat gluten and seitan are concentrated sources of gluten
 - Vital wheat gluten is made by combining flour with water to make dough and knead it to develop the gluten network; the dough is then rinsed in water until all starch is removed and only the rubbery gluten remains, which is then dried and ground before packaging
 - Seitan is a vegan meat substitute made by rinsing wheat dough to remove the starch (produced by kneading wheat flour with water to develop sticky strands of gluten protein, the dough is then rinsed to wash away the starch)
- Gluten can be added to whole grain flours to strengthen dough, to retain more gas, resulting in greater volume and lighter crumb
- Extra gluten is beneficial in “gluten-challenged” dough containing lower gluten flours (like whole wheat or rye) or sharp or bulky components (nuts, seeds, or bran) that can sever gluten strands; can also enhance the chewiness of breads like bagels

Joslin Diabetes Center 2019
Gluten-related Disorders

- Celiac Disease (CD)
- Wheat Allergy (WA)
- Non-Celiac Gluten/Wheat Sensitivity (NCGS/WS)
 - Functional symptoms related to gluten/wheat ingestion without positive tests for CD or WA (a diagnosis of exclusion)
 - Leaky gut leading to activation of all-body immune response?
 - Ongoing research into markers and treatment
FODMAPs

- The symptoms of IBS and NCGS may not be caused by the protein gluten, but rather carbohydrates in foods
 - **F**ermentable
 - **O**ligosaccharides – fructans (inulin) and galactans
 - **D**isaccharides – lactose
 - **M**onosaccharides – fructose in excess of glucose
 - **P**olyols – sugar alcohols

- A diet low in FODMAPs relieves symptoms in some patients with IBS and NCGS

Joslin Diabetes Center 2019
Eliminate foods containing FODMAPs

<table>
<thead>
<tr>
<th>excess fructose</th>
<th>lactose</th>
<th>fructans</th>
<th>galactans</th>
<th>polyols</th>
</tr>
</thead>
<tbody>
<tr>
<td>fruit</td>
<td>milk</td>
<td>vegetables</td>
<td>legumes</td>
<td>fruit</td>
</tr>
<tr>
<td>apple, mango, nashi, pear, tinned fruit in natural juice, watermelon</td>
<td>milk from cows, goats or sheep, custard, ice cream, yoghurt</td>
<td>artichoke, asparagus, beetroot, broccoli, brussels sprouts, cabbage, eggplant, fennel, garlic, leek, okra, onion (all), shallots, spring onion</td>
<td>baked beans, chickpeas, kidney beans, lentils, soy beans</td>
<td>apple, apricot, avocado, blackberry, cherry, longon, lychee, nashi, nectarine, peach, pear, plum, prune, watermelon</td>
</tr>
<tr>
<td>sweeteners</td>
<td>cheeses</td>
<td>cereals</td>
<td></td>
<td>vegetables</td>
</tr>
<tr>
<td>fructose, high fructose corn syrup</td>
<td>soft unripened cheeses eg, cottage, cream, mascarpone, ricotta</td>
<td>wheat and rye, in large amounts eg, bread, crackers, cookies, couscous, pasta</td>
<td></td>
<td>cauliflower, green capsicum (bell pepper), mushroom, sweet corn</td>
</tr>
<tr>
<td>large total fructose dose</td>
<td></td>
<td></td>
<td></td>
<td>sweeteners</td>
</tr>
<tr>
<td>concentrated fruit sources, large serves of fruit, dried fruit, fruit juice</td>
<td></td>
<td></td>
<td></td>
<td>sorbitol (420), mannitol (421), isomalt (953), maltitol (965), xylitol (967)</td>
</tr>
<tr>
<td>honey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corn syrup, fruisana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chicory, dandelion, inulin, pistachio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Foods suitable on a low-FODMAP diet

<table>
<thead>
<tr>
<th>fruit</th>
<th>vegetables</th>
<th>grain foods</th>
<th>milk products</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>banana, blueberry, boysenberry, cantaloupe, cranberry, durian, grape, grapefruit, honeydew melon, kiwi fruit, lemon, lime, mandarin, orange, passionfruit, pawpaw, raspberry, rhubarb, rockmelon, star anise, strawberry, tangelo</td>
<td>alfalfa, bamboo shoots, bean shoots, bok choy, carrot, celery, choko, choy sum, endive, ginger, green beans, lettuce, olives, parsnip, potato, pumpkin, red capsicum (bell pepper), silver beet, spinach, squash, swede, sweet potato, tara, tomato, turnip, yam, zucchini</td>
<td>cereals gluten-free bread or cereal products</td>
<td>milk lactose-free milk*, oat milk*, rice milk*, soy milk*</td>
<td>tofu</td>
</tr>
<tr>
<td>Note: if fruit is dried, eat in small quantities</td>
<td>bread 100% spelt bread</td>
<td></td>
<td>*check for additives</td>
<td>sweeteners sugar* (sucrose), glucose, artificial sweeteners not ending in “-of”</td>
</tr>
<tr>
<td>herbs</td>
<td>cereals</td>
<td>polenta</td>
<td>cheeses</td>
<td>honey substitutes</td>
</tr>
<tr>
<td>basil, chili, coriander, ginger, lemon grass, marjoram, mint, oregano, parsley, rosemary, thyme</td>
<td>gluten-free bread or cereal products</td>
<td>polenta</td>
<td>hard cheeses, and brie and camembert</td>
<td>golden syrup*, maple syrup*, molasses, treacle</td>
</tr>
</tbody>
</table>

*small quantities
Celiac Disease

- Occurs worldwide, prevalence varies
- Affects ~ 1% of US and European populations
- Onset at any age
- Impacts almost every body system
- Non-intestinal symptoms > 50% of new diagnoses
- In the US ~ 50% with CD have been diagnosed
CELIAC DISEASE

PERCENTAGE OF POPULATION WITH CELIAC DISEASE IN VARIOUS COUNTRIES:

AROUND THE WORLD

Joslin Diabetes Center 2019
Celiac Disease

- Occurs worldwide, prevalence varies
- Affects ~ 1% of US and European populations
- Onset at any age
- Impacts almost every body system
- Non-intestinal symptoms > 50% of new diagnoses
- In the US ~ 50% with CD have been diagnosed
CD Prevalence

<table>
<thead>
<tr>
<th></th>
<th>US population</th>
<th>Autoimmune</th>
<th>Genetic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st deg. relative</td>
<td>10%</td>
<td>Type 1 DM</td>
<td>8%</td>
</tr>
<tr>
<td>Sibling</td>
<td>15%</td>
<td>Thyroiditis</td>
<td>15%</td>
</tr>
<tr>
<td>Parents</td>
<td>9%</td>
<td>Arthritis (RA)</td>
<td>1-8%</td>
</tr>
<tr>
<td>Children</td>
<td>8%</td>
<td>Sjögren's</td>
<td>2-15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7%</td>
</tr>
</tbody>
</table>

Joslin Diabetes Center 2019
CD Prevalence

- Mayo Clinic study (9/2019) found that 44% of screened first-degree relatives had celiac disease; 94% had non-classic symptoms or no symptoms
- Sample of 104 patients diagnosed with CD 1983 – 2017; identified 477 first-degree relatives, 360 were screened for CD
- Of those, 160 were diagnosed with CD; median period between diagnosis of the initial patient and the relative was just under six months
- More screening for CD among family members could prevent long-term complications, such as nutritional deficiencies, development of new autoimmune conditions, and small bowel malignancy
- Most CD physicians suggest relatives get tested at the same time their family member is diagnosed, then every 2 to 3 years or anytime potential symptoms emerge (because celiac disease can develop at any age, it’s possible for a relative to have an initial negative test result, but then test positive 12 years later)
CD Disease Process

1. Gluten entry into submucosa
2. Chemical change of gluten by tissue transglutaminase
3. Immune activation
CD Disease Process

1. Gluten entry into submucosa
2. Deamidation of gluten by tissue transglutaminase
3. Immune activation
Normal small bowel Celiac disease

Gluten (> 4hr) Gluten-free diet

Joslin Diabetes Center 2019
Sites of Nutrient Absorption

- Esophagus:
 - Water
 - Ethyl alcohol
 - Copper
 - Iodide
 - Fluoride
 - Molybdenum

- Stomach:
 - Thiamin
 - Riboflavin
 - Niacin
 - Pantothenate
 - Biotin
 - Folate
 - Vitamin B_6
 - Vitamin C
 - Vitamins A, D, E, and K
 - Calcium
 - Phosphorus
 - Magnesium
 - Iron
 - Zinc
 - Chromium
 - Manganese
 - Molybdenum

- Duodenum:
 - Calcium
 - Phosphorus
 - Magnesium
 - Iron

- Jejunum:
 - Lipids
 - Monosaccharides
 - Amino acids
 - Small peptides

- Ileum:
 - Vitamin C
 - Folate
 - Vitamin B_12
 - Vitamin D
 - Vitamin K
 - Magnesium
 - Others

- Large Intestine:
 - Water
 - Bile salts and acids

Joslin Diabetes Center 2019
Risk Factors - Genetic

- Human leukocyte antigen (HLA) genes regulate the immune system
- HLA-DQ2 (DQ2.2 or DQ2.5) and/or HLA-DQ8 genes are believed to be required for CD (also called “permissive genes”) – so if not present have a good negative predictive value
 - > 95% of those with CD have DQ2 or DQ8
 - > 90% of people with CD have DQ2
- Having double HLA-DQ2 (1 from mom and 1 from dad) increases risk/severity of CD; DQ2.5 has highest risk
Risk Factors - Genetic

- 30-40% of the US population has DQ2 and/or DQ8; only 2-3% of those will develop CD; accounts for 30-40% of genetic risk
- Researchers have identified 39 other, non-HLA genes associated with increased risk for CD
- These genes might help researchers identify what “goes wrong” and so discover treatment options
Environmental Triggers - Gluten

- Gluten is required
- Studies in people at risk for CD are inconsistent regarding:
 - The timing of gluten introduction
 - Duration of breastfeeding or maintenance during gluten introduction
- How much gluten we eat does seem to matter
- Protein content of wheat (and so gluten content) has not changed significantly over the years; but the amount of wheat and vital gluten intake has increased
Environmental Triggers - Gluten

- The Environmental Determinants of Diabetes in the Young (TEDDY)
 - Gluten intake > 2 gm/day at age 2 years increased risk of CDA and CD
- Diabetes Autoimmunity Study in the Young (DAISY)
 - Children in the highest third of gluten intake between the ages of 1 and 2 years had a 2-fold greater risk of CDA and CD than those in the lowest third
 - The risk of developing CDA increased by 5% per daily gram increase in gluten intake in 1-year-olds
Environmental Triggers - Hygiene Hypothesis

- People are exposed to less germs early in childhood due to cleaner living conditions
- Decreased exposure to microbes and infectious agents does not allow immune system to mature normally
- Supported by a study that found dramatically different prevalence of celiac disease antibodies in Finland (1.4%) and Russian Karelia (0.6%)
 - Despite geographical proximity
 - Similar prevalence HLA-DQ2/DQ8
 - But, major differences in economic development
Environmental Triggers - Infectious Agents

- Rotavirus (causes vomiting and watery diarrhea):
 - Almost all children have had rotaviral infection by age 5
 - ≥ 2 infections in children increased risk of CD
- Significantly higher risk of CD in children with high infection frequency in first 18 months of life (any infection)
- Reovirus (causes colds) also implicated in CD
- Alteration in gut permeability or activate the autoimmune system
Environmental Triggers - Microbiome

- Microbiome has key beneficial health functions:
 - Affect food digestion
 - Healthy bacteria help prevent pathogens from entering the body by reinforcing the epithelial barrier (mucus and short chain fatty acids)
 - Exerts great effect on immune system development; human immune system and gut microbiota interact in a way that each shapes the other
Environmental Triggers - Microbiome

- Dysbiosis may cause autoimmunity by altering good/bad microbiotic balance and so our immune responses
- Research indicates that the microbiome is different between groups of people with CD (untreated CD, treated CD, treated but symptomatic CD)
- Unclear whether changes in types of gut bacteria are a cause or a result of intestinal inflammation
Correlation is Not the Same as Causation

![Graph showing the correlation between total US highway fatality rate and fresh lemons imported to USA from Mexico. The graph includes data points for the years 1996 to 2000, with an R² value of 0.97. Sources: U.S. NHTSA, DOT HS 810 780 and U.S. Department of Agriculture.](image)
Signs and Symptoms: Malabsorptive

Gastrointestinal
Near/total malabsorption
- Diarrhea
- Abdominal distension
- Anorexia
- Failure to thrive/wt loss
- Abdominal pain
- Vomiting
- Constipation

Extraintestinal
Some malabsorption
- Anemia
- Short stature
- Osteopenia, osteoporosis, bone fracture
- Recurrent abortions
- Hepatic steatosis
- Abdominal pain
Signs and Symptoms: Absorption Independent/Extraintestinal

- Dermatitis herpetiformis
- Dental enamel hypoplasia
- Ataxia
- Alopecia
- Primary biliary cirrhosis
- Isolated hypertransaminasemia
- Non-alcoholic fatty liver
- Recurrent aphthous stomatitis
- Fertility problems
- Myasthenia gravis
- Recurrent pericarditis
- Psoriasis
- Polyneuropathy
- Epilepsy
- Vasculitis
- Dilative cardiomyopathy
- Hypo/hyperthyroidism
- Intestinal lymphoma

May be related to autoimmune inflammation or other tTG targets - nine human transglutaminase enzymes identified $TG2 \rightarrow CD$, $TG3 \rightarrow DH$, $TG6 \rightarrow gluten ataxia$
Associated Conditions: Dermatitis Herpetiformis and Dental Enamel Defects
Screening for CD

<table>
<thead>
<tr>
<th>Blood Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTG-IgA*</td>
<td>90-100%</td>
<td>95-100%</td>
<td>Lower cost, ease of test, reliable, standardized - for initial screening</td>
</tr>
<tr>
<td>Tissue transglutaminase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGP-IgA*/DGP-IgG*</td>
<td>80-95%</td>
<td>86-98%</td>
<td>Very good in children < 2 yr; can identify CD in pts with IgA deficiency</td>
</tr>
<tr>
<td>Deamidated gliadin peptide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMA-IgA Endomysial</td>
<td>93-100%</td>
<td>98-100%</td>
<td>Operator dependent, prone to subjective error, expensive</td>
</tr>
<tr>
<td>HLA typing</td>
<td></td>
<td>98%</td>
<td>Good negative predictive value</td>
</tr>
<tr>
<td>IgA*</td>
<td></td>
<td></td>
<td>If IgA antibodies negative, test IgG-TTG/DPG</td>
</tr>
<tr>
<td>Biopsy (Gold standard for dx)</td>
<td>Poor</td>
<td>High</td>
<td>Damage can be patchy; depends on grade cut-off point, biopsy orientation, pathologist</td>
</tr>
<tr>
<td>AGA-IgA Gliadin</td>
<td></td>
<td></td>
<td>Significantly lower sensitivity and specificity; false positive: true positive 10:1 May be a biomarker for NCGS</td>
</tr>
</tbody>
</table>

*Part of UH Celiac Panel

Joslin Diabetes Center 2019
Celiac Panel

<table>
<thead>
<tr>
<th>Celiac Panel</th>
<th>Normal</th>
<th>Weak +</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA</td>
<td>34-305 mg/dL</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TTG-IgA</td>
<td>< 20 CU</td>
<td>20 - 30 CU</td>
<td>> 30 CU</td>
</tr>
<tr>
<td>DPG-IgA</td>
<td>< 20 CU</td>
<td>20 - 30 CU</td>
<td>> 30 CU</td>
</tr>
<tr>
<td>DPG-IgG</td>
<td>< 20 CU</td>
<td>20 - 30 CU</td>
<td>> 30 CU</td>
</tr>
</tbody>
</table>

CU = Chemiluminescent Unit
Biopsy: Histological Features

- Normal 0
- Infiltrative 1
- Hyperplastic 2
- Partial atrophy 3a
- Subtotal atrophy 3b
- Total atrophy 3c

Marsh 0: Healthy mucosa
Marsh 1: Unspecific increase of immune cells (IELs)
Marsh 2: Enlarged crypts ("deep valleys")
Marsh 3A to 3C: Shortened villi, long crypts = villous atrophy (flat mucosa)

Joslin Diabetes Center 2019
Biopsy

- Might miss the diagnosis because intestinal damage can be “patchy,” depends on how many samples are taken (4 is recommended), and who is reading the slide
- People are fearful of the procedure (but no preparation like colonoscopy)
Does a Biopsy Matter?

- Medical benefits
- Health benefits if CD is found and treated
- If positive, family members should be screened
- A false positive from blood tests alone can cause a string of unnecessary tests in relatives
- Without official diagnosis people with no symptoms may be less likely to follow a GFD
- The burden of the GFD is substantial
Biopsy

- 2012 ESPGHAN* “Guidelines for the Diagnosis of Coeliac Disease” states no biopsy is needed if:
 - Patient has “Classic Symptoms”
 - Antibody tests are >10 times the upper limit of normal (for example, 200 CU, if upper limit is 20 CU)
 - Verified by EMA positivity (a blood test)
 - And HLA-DQ2 and/or DQ8 positive (genetic test)
- Recent study confirmed that IgA-TTG at least 10 times normal can be used to diagnose CD without other tests/biopsy (repeat IgA-TTG test to exclude sample mix-up)

*European Society for Paediatric Gastroenterology Hepatology and Nutrition

Joslin Diabetes Center 2019
Treatment of Celiac Disease

- Currently, the only treatment is a life-long gluten-free diet (GFD)
 - Eliminate gluten
 - Expand repertoire of GF foods
 - Optimize nutrient intake
- GFD should not be recommended until diagnosis is confirmed
Gluten-Containing Grains

<table>
<thead>
<tr>
<th>Wheat</th>
<th>Wheat Varieties</th>
<th>Barley</th>
<th>Rye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bran</td>
<td>Einkorn</td>
<td>Malt</td>
<td></td>
</tr>
<tr>
<td>Bulgur</td>
<td>Emmer</td>
<td>Malt Beverages</td>
<td></td>
</tr>
<tr>
<td>Couscous</td>
<td>Kamut</td>
<td>Malt Extract</td>
<td></td>
</tr>
<tr>
<td>Cracked Wheat</td>
<td>Spelt (Dinkel)</td>
<td>Malt Flavoring</td>
<td></td>
</tr>
<tr>
<td>Durum Flour</td>
<td>Triticale</td>
<td>Malted Milk</td>
<td></td>
</tr>
<tr>
<td>Farina</td>
<td></td>
<td>Malt Syrup</td>
<td></td>
</tr>
<tr>
<td>Graham Flour</td>
<td></td>
<td>Malt Vinegar</td>
<td></td>
</tr>
<tr>
<td>Matzo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semolina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat Bran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat Germ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat Starch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Food Labels

- **Food Allergen Labeling and Consumer Protection Act (FALCPA), 2004**
 - Labels must state if the food includes any of 8 common allergens (soy, wheat, milk, eggs, peanuts, tree nuts, crustacean shellfish and fish)

- **FALCPA – 2014**
 - Defined “gluten-free” for label claim
 - However, USDA regulated foods, medications, supplements and other non-food items do not require identification of allergens; no regulation for “gluten-free”
Threshold for Safe Gluten Intake

<table>
<thead>
<tr>
<th>Gluten (mg/day)</th>
<th>Relative to 1 Slice Bread</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg (villous atrophy by 90 days)</td>
<td>~1/70<sup>th</sup> 0.014</td>
</tr>
<tr>
<td>10 mg (no villous atrophy)</td>
<td>1/350<sup>th</sup> 0.003</td>
</tr>
<tr>
<td>0.4 mg (villous atrophy)</td>
<td>1/8750<sup>th</sup> 0.000114</td>
</tr>
<tr>
<td>0.015 mg (clinical adverse effects)</td>
<td>1/233,333<sup>th</sup> 0.0000043</td>
</tr>
</tbody>
</table>

Joslin Diabetes Center 2019
Naturally Gluten-free Foods
(If processed without gluten)

- Fresh, frozen or canned fruits and vegetables
- Fresh meats, poultry, seafood, fish, game, eggs, some processed meats, dried peas, beans, lentils, tofu
- Milk, yogurt, aged, natural cheese
- Oils, tree nuts, seeds, natural peanut butter, salad dressing, spreads
- Honey, sugar, pure maple syrup, corn syrup, jams, jellies, candy, ice cream
- Pure spices and herbs, salt, soy sauce without wheat, cider, wine, distilled and non-malt vinegars
- Coffee ground from whole beans, brewed tea, distilled alcoholic beverages
Gluten-Free Grains/Starches

- Amaranth
- Arrowroot
- Whole-bean flour
- Buckwheat
- Corn*, cornstarch
- Flax
- Job’s tears
- Millet
- Nut flours
- Oats, oat bran, oat gum*

- Peas, pea flour
- Potato, sweet potato, yam, potato flour, potato starch
- Quinoa
- Rice, wild rice, rice bran, rice flour
- Sago
- Sorghum
- Soy
- Tapioca
- Teff

Underlined options are high in nutritional value

*Some with CD react to corn and/or oats

Joslin Diabetes Center 2019
Nutritional Adequacy of the GFD

- Patients with no nutritional deficiencies have the same nutritional requirements as the general population
- Healing takes 6 months to years, although complete recovery in adults is rare
- Lactose intolerance is common at diagnosis, but may resolve
- Studies suggest that osteopenia and vitamin and mineral deficiencies resolve on the diet
- GF foods may be lower in B vitamins, iron, and fiber (not fortified); a GF daily multivitamin may be recommended in patients with CD
- The GFD may be high in lead, mercury, arsenic and cadmium
Nutrient Dense Gluten-free Foods

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Vegetables</th>
<th>Fruits</th>
<th>Protein</th>
<th>Dairy</th>
<th>GF Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamin</td>
<td></td>
<td></td>
<td>Pork, ham, bacon, liver, legumes, nuts</td>
<td></td>
<td>Whole grains</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>Leafy greens vegetables</td>
<td></td>
<td>Meat</td>
<td>Milk, yogurt, cottage cheese</td>
<td>Whole-grain or enriched breads and cereals</td>
</tr>
<tr>
<td>Niacin</td>
<td></td>
<td></td>
<td>Eggs, meat, poultry, fish, nuts, other protein-rich foods</td>
<td>Milk</td>
<td>Whole-grain or enriched breads and cereals</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>Green and leafy vegetables</td>
<td>Fruits</td>
<td>Meats, fish, poultry, shellfish, legumes</td>
<td></td>
<td>Whole grains</td>
</tr>
<tr>
<td>Folate</td>
<td>Leafy green vegetables</td>
<td></td>
<td>Legumes, seeds, liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-12</td>
<td></td>
<td></td>
<td></td>
<td>Animal products</td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td>Vegetables</td>
<td>Fresh fruits</td>
<td>Legumes, seeds</td>
<td></td>
<td>Whole grains</td>
</tr>
</tbody>
</table>
Nutrient Dense Gluten-free Foods

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Vegetables</th>
<th>Fruits</th>
<th>Protein</th>
<th>Dairy</th>
<th>GF Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Leafy greens, sea vegetables</td>
<td>Fortified orange juice, dried fruit</td>
<td>Calcium-rich soy products, beans, sardines (with bones)</td>
<td>Milk, yogurt, cheese, fortified soymilk</td>
<td>Quinoa, brown rice</td>
</tr>
<tr>
<td>Iron</td>
<td>Spinach, other leafy greens</td>
<td></td>
<td>Beef, poultry, fish, seafood (heme)</td>
<td></td>
<td>Amaranth, teff, buckwheat, quinoa</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Leafy greens, peas</td>
<td>Bananas, dried apricots, avocados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Plant oils (eg, olive)</td>
<td>Avocados</td>
<td>Salmon, nuts, enriched eggs</td>
<td>Fortified milk</td>
<td></td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Leafy greens, vegetable oils</td>
<td>Kiwi, mango</td>
<td>Nuts, seeds</td>
<td></td>
<td>GF whole grains</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Leafy greens, broccoli, soybean oil</td>
<td></td>
<td></td>
<td>Milk, dairy</td>
<td></td>
</tr>
</tbody>
</table>
The GFD is Challenging

- Perceived burden of GFD is significant; second only to the perceived burden of kidney dialysis
- Gluten is found in ~ 90% of processed foods
- Recent study indicates one third of “gluten-free” restaurant foods contain gluten
- Hard to tell whether foods contain gluten
 - Labels can be difficult to understand
 - Gluten is a hidden ingredient in many non-food items (vitamins, cosmetics, other products)
 - Recent evidence indicates that it is rarely found in oral medications (http://www.glutenfreedrugs.com has links to lists)

Joslin Diabetes Center 2019
The GFD is Challenging - Cross Contamination

- Cultivation of grains (leftover or wind-blown wheat in the field)
- Harvesting and shipping of grains (bins, rail cars, trucks)
- Processing (shared equipment)
- Grocery stores (bulk sale bins/scoops)
- Home
 - Shared kitchen items: toasters, counters, utensils (wooden spoons, wooden cutting boards, etc.), storage containers, jars of jam, peanut butter, and other spreads (no double-dipping), hand towels...
The GFD is Challenging - Cross Contamination

- Restaurants
 - Substantial fraction of GF labeled restaurant foods contain detectable gluten
 - Gluten was detected in 32% of GF labeled foods
 - Differed by meal: 27.2% at breakfast and 34.0% at dinner
 - Gluten detected in 53.2% of pizza and 50.8% of pasta GF samples
 - GF labeled food was less likely to test positive for gluten in the West than in the Northeast United States
 - Pans, grills, deep-fat fryers used for multiple foods
 - Serving utensils used in buffets
 - Kitchen and wait staff: “Educate, separate, sanitize”
The GFD is Challenging

- Cost of GF versions of foods are often 2-3 times higher than regular version
- Naturally GF foods cost less than GF substitutes
 - Potatoes, rice, corn, corn tortillas
 - Homemade foods may cost less than processed GF foods like bread, pizza, canned or frozen meals
- The cost of GF foods replaces the cost of “pills”
- The IRS allows a tax deduction for the increased cost of gluten-free foods and DNA tests can be counted as a medical expense if done specifically for screening for disease risk

Joslin Diabetes Center 2019
Benefits of the GFD in CD

- Improve/resolve GI symptoms
- Resolve DH rash
- Resolve anemia
- Improve management of osteopenia, osteoporosis and hypothyroidism
- Might reduce the risk of other autoimmune disease
- Might improve mood and sense of well-being
Pathophysiology of CD

1. Gluten entry into submucosa
2. Deamidation of gluten by tissue transglutaminase
3. Immune activation
Research into CD Treatment

[Diagram showing the process of CD treatment, involving various pathways and potential inhibitors.]
The spectrum of wheat-related conditions include wheat allergy, intolerance and CD.

Celiac disease is autoimmune and is the only of the gluten spectrum that causes villous atrophy.

CD affects about 1% of the US population.

Having a family member with CD increases risk.

Blood tests are used to screen for CD, but biopsy of the small intestine is the gold standard for diagnosis.

The gluten-free diet is the only proven treatment for CD; it can be challenging.

A vaccine, pills to help break down gluten and immuno-therapy drugs are among treatment options being studied.
Resources

- www.beyondceliac.org Celiac disease organization, lots of info about CD and diet
- www.glutenfreedrugs.com Site managed by a pharmacist and his students
- www.glutenfreewatchdog.org Tricia Thompson, MS, RD started this – they test foods for gluten
Questions?
Clinical Stages of Celiac Disease

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential</td>
<td>Positive serological tests and normal intestinal biopsy</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>Absence of symptoms despite specific questioning regarding symptoms</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>Presence of either intestinal or extra-intestinal symptoms</td>
</tr>
<tr>
<td>Classic</td>
<td>Diarrhea, signs and symptoms of malabsorption, or both</td>
</tr>
<tr>
<td>Non-classic</td>
<td>Lack of malabsorption symptoms, but other symptoms present (e.g., anemia, osteoporosis)</td>
</tr>
<tr>
<td>Refractory</td>
<td>Persistent symptoms and villous atrophy despite adherence to a gluten-free diet</td>
</tr>
</tbody>
</table>
Estimation of Genetic Risk

<table>
<thead>
<tr>
<th>HLA DQ2/DQ8 Genotype</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ2+DQ8</td>
<td>1:7 (14.3%)</td>
</tr>
<tr>
<td>DQ2+DQ2 OR Homozygous DQB1*02</td>
<td>1:10 (10%)</td>
</tr>
<tr>
<td>DQ8+DQ8</td>
<td>1:12 (8.4%)</td>
</tr>
<tr>
<td>DQ8+DQB1*02</td>
<td>1:24 (4.2%)</td>
</tr>
<tr>
<td>Homozygous DQB1*02</td>
<td>1:26 (3.8%)</td>
</tr>
<tr>
<td>DQ2 alone</td>
<td>1:35 (2.9%)</td>
</tr>
<tr>
<td>DQ8 alone</td>
<td>1:89 (1.2%)</td>
</tr>
<tr>
<td>Population risk</td>
<td>1:100 (1%)</td>
</tr>
<tr>
<td>½ DQ2: DQB1*02</td>
<td>1:210 (0.5%)</td>
</tr>
<tr>
<td>½ DQ2: DQA1*05</td>
<td>1:1842 (0.05%)</td>
</tr>
<tr>
<td>No HLA-DQ2/DQB celiac susceptibility alleles</td>
<td>1:2518 (<0.04%)</td>
</tr>
</tbody>
</table>

Environmental Triggers - Gluten

- **Diabetes Autoimmunity Study in the Young (DAISY)**
 - 1875 of 2547 children genetically at risk for T1DM and CD and had dietary data and were screened for CD autoimmunity (blood tests)
 - 161 developed CDA
 - Lowest third of intake 6.4 gm/day - used as reference point
 - Middle third 10.9 gm/day – HR 1.96 (1.20-3.19), P = 0.01
 - Highest third 18.1 gm/day – HR 2.17 (1.22-3.88), P = 0.01
 - 85 diagnosed with CD
 - Lowest third - used as reference point
 - Middle third – HR 1.81 (0.94-3.49), P = 0.08
 - Highest third – HR 1.96 (0.9-4.24) P = 0.09
 - Gluten intake between 1 and 2 years (and to lesser extent, cumulative intake through childhood) were associated with CDA/CD
Screening Results

<table>
<thead>
<tr>
<th>IgA-TTG</th>
<th>TOTAL IgA</th>
<th>IgG-TTG</th>
<th>IgA-DGP</th>
<th>IgG-DGP</th>
<th>DIAGNOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Normal</td>
<td>Not performed</td>
<td>Not performed</td>
<td>Not performed</td>
<td>Presumptive CD</td>
</tr>
<tr>
<td>Negative</td>
<td>Normal</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>CD not likely</td>
</tr>
<tr>
<td>Negative</td>
<td>Low</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Possible celiac disease</td>
</tr>
<tr>
<td>Negative</td>
<td>Normal</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Possible celiac disease (or not performed)</td>
</tr>
</tbody>
</table>