The History of

Three Ageless Cardiac Drugs

Aspirin – Digitalis – Nitroglycerine

Harold Smulyan M.D.
Emeritus Professor of Medicine
Upstate Medical University

Oasis HealthLink
January 16, 2020
Drug Development Time
12 – 15 years
Aspirin
Black Willow Tree
Salix Nigra
Black Willow Tree

Salix Nigra
Aspirin

Ancient Era

4000 BC – Mesopotamia, Sumeria
3500 – 2000 BC Assyria
1300 BC - Egypt
600 – 650 BC – Babylonia
460 – 370 BC – Hippocrates in Greece, China
100 AD and later – Rome

Modern Era

1763 – The Reverend Edward Stone – letter to The Royal Society
Powdered Willow Bark in a dram of water
XXXII. An Account of the Success of the Bark of the Willow in the Cure of Agues. In a Letter to the Right Honourable George Earl of Macclesfield, President of R. S. from the Rev. Mr. Edmund Stone, of Chipping-Norton in Oxfordshire.

My Lord,

Among the many useful discoveries, which this age hath made, there are very few which, better deserve the attention of the public than what I am going to lay before your Lordship.

There is a bark of an English tree, which I have found by experience to be a powerful astringent, and very efficacious in curing agues and intermitting disorders.

About six years ago, I accidentally tasted it, and was surprized at its extraordinary bitterness; which immediately raised me a suspicion of its having the properties of the Peruvian bark. As this tree delights in a moister or wet soil, where agues chiefly abound, the general maxim, that many natural maladies carry their cures along with them, or that their remedies lie not far from their causes, was so very apposite to this particular case, that I could not help applying it; and that this might be the intention of Providence here, I must own had some little weight with me.

The excessive plenty of this bark furnished me, in my speculative disquisitions upon it, with an argument

50 patients over 5 years
Aspirin

Development

1828 – Buchner at University of Munich – separated active substance – called it Salicin (after the tree)

1829 – Leroux – French pharmacist – crystallized the substance

1860 – Kolb and Lauterman – chemical synthesis led to small scale and then commercial production by Heyden Chemical Company in Germany – sold to relieve pain and fever.

1895 – Salicylic Acid now produced by the Bayer Company

1897 – Bayer tries to modify the drug for a drug with fewer side effects – Acetylation
Salicylic Acid Acetylsalicylic Acid (aspirin)
Aspirin

Discovery

1934 – Bayer Company publishes history of Aspirin discovery
 Felix Hoffmann – chemist at Bayer – asked to formulate a related
 compound with fewer side effects. Assigned the task to
 Heinrich Dreser – investigated several derivatives (including acetyl)
 then set the project aside for 18 months
1898 – promising clinical experience
1899 – Bayer names the drug Aspirin and markets it as a powder
1900 – Aspirin tablets

1949 – Arthur Eichengrün – former head of chemical research at Bayer and
 colleague of Hoffman now claims credit for development of Aspirin
1944 – Nazis take over his business and send him to a concentration
 camp at age 76.
Bayer Aspirin Bottle
1899
Aspirin

Modern Era

1950’s – Lawrence Craven M.D. family practice – Glendale, California
 published 3 articles in minor journals recommending aspirin to prevent heart
 attacks – got little notice
1960’s – Aspirin interfered with the clotting mechanism and suppressed inflammation –
 both features of atherosclerosis.
1970’s – Explanation of how Aspirin relieved pain and fever – led to development of NSAIDs
 Sir John Vane (and others) wins Nobel Prize
1980’s – Clinical trials in thousands of patients showing benefits in the treatment and
 prevention of coronary heart disease.

Summary
Digitalis
(Digoxin)
William Withering
1741 - 1799
Digitalis

1. **William Withering**
 - Worked for his father – an apothecary
 - Two physician uncles – encouraged him to go medical school
 - Graduated from University of Edinburgh -1766
 - Opened a practice in Stafford – Stafford Infirmary – 8 years
 - Practice slow - spare time – expert in Botany

2. **New unexpected practice opportunity in Birmingham**
 - Offered by Erasmus Darwin (Grandfather of Charles Darwin)
 - Busy, lucrative practice – one of the richest in England
 - One day per week in Free Clinic for the poor – General Hospital at Birmingham

3. **Lunar Society membership**
 - Erasmus Darwin
 - James Watt (inventor of the steam engine)
 - Josiah Wedgewood (pottery)
 - Joseph Priestly (isolator of oxygen)
Digitalis

1. **Dropsy**
 - One of the chief causes of death
 - Swelling (edema) of the feet, abdomen
 - No effective treatment known at the time.

2. Where physicians had failed, including himself, Withering learned of an old woman who had successfully treated dropsy with a home brewed tea. After some persuasion, Withering convinced her to disclose the contents.

3. Withering’s written description of the events.

 “In the year 1775 my opinion was asked concerning a family receipt for the cure of the Dropsy. I was told that it had long been kept secret by an old woman in Shropshire, who had sometimes made cures after the more regular practitioners had failed......This medicine was composed of 20 more different herbs: but it was not very difficult for one conversant in these subjects to perceive, that the active herb could be no other than the Foxglove.”
Digitalis Purpurea
(Foxglove)
An Account of the Foxglove

by William Withering M.D.

An account of 158 treated patients
10 year experience
Successes and failures
Dose responses
Toxic effects
Digitalis

Follow-up

1. Book widely read in Europe and America and drug widely used but ineffective in non-cardiac causes of Dropsy.
2. Cornerstone of the treatment of heart failure
3. Little research on the drug or its effects for the next 100 years
4. Identification and purification of the active substance and eventual commercial synthesis
5. Explanation of its actions led to a better understanding of the mechanisms of cardiac contraction.
6. In the last 20 to 30 years, has been edged aside by more effective agents but it is still available and plays a small clinical role.
7. Withering died in 1799 at age 58 of tuberculosis

Summary
Ascanio Sobrero
1812 - 1888
Nitroglycerine

Ascanio Sobrero

Born in 1812 in the Piedmont region of Italy

Educated in Medicine at the University of Turin in Italy and in Chemistry at the University Gießen in Germany.

With the influence of family and friends was accepted to study further in the laboratory of famous chemist Theophile-Jules Pelouze in Paris. 1840

Accomplished the nitration of glycerine in 1846

Detonated a small amount at an important lecture at the Academy of Science in Torino 1847.
Glycerol + 3 HNO₃ (c. H₂SO₄) → CHONO₂ + 3 H₂O

Glycerol → Nitroglycerine
Alfred B. Nobel
1833 - 1896
Nitroglycerine
(Explosive)

Alfred B. Nobel

Born in Stockholm – 1833

Father moved his failing business to St. Petersburg, Russia – making munitions and military equipment for the Czar – Crimean War.

Business initially successful – Alfred sent to Paris to study chemistry and explosives in laboratory of Pelouze (1850).

Meets Sobrero and after one year, takes NTG back to Stockholm to improve its stability – 1860’s

Multiple explosions – one kills younger brother.

Two most important patents – blasting cap and dynamite.

Leaves most of his fortune to fund 5 Nobel Prizes – Chemistry, Physics, Physiology or Medicine, Literature and Peace.
Nitroglycerine
(Medication)

Amyl Nitrite
A volatile liquid discovered by French chemist Antoine Balard in 1844. When sniffed produced a brief flushing of the face, racing of the pulse, headache and a fall in blood pressure.
Thomas L. Brunton – Scottish physician (pharmacologist) described its use in the relief of angina pectoris in the Lancet – 1867 – sought a more convenient and longer lasting remedy.

Nitroglycerine
Similarity to amyl nitrite – later onset, longer duration
William Martindale – British chemist – prepared a solid form imbedded in chocolate. “is stable, non-volatile....and perfectly inexplosive – it cannot be detonated”.
Within 4 years, reports of the benefit of NTG had spread widely and described in the Boston Medical and Surgical Journal.
Manufactured by Parke-Davis in 5 different strengths.
Sublingual Nitroglycerine Tablets
Nitroglycerine

Follow-Up

1. Mechanism of action of nitroglycerine not explained for over 80 years.
2. Involved with the function of the inner lining of blood vessels.
3. Fundamental understanding of the circulation and awarding of the Nobel Prize in Physiology or Medicine to the involved scientists.
5. Dynamite still used for blasting, roads etc. but has been replaced by TNT for most military purposes.
6. Alfred Nobel died of heart disease in 1896, but refused to take NTG for angina.

Summary