The Academic Catalog accurately reflected curricular program requirements and course descriptions at the time of its publication. However, Upstate reserves the right to change the policies, including academic requirements, at any time.

Please see the following resources for additional information:

Academic Calendars:
http://www.upstate.edu/currentstudents/academic/records/calendars.php

Admission requirements, financial aid and tuition and fees:
http://www.upstate.edu/prospective/

The College of Graduate Studies:
http://www.upstate.edu/grad/

The College of Health Professions:
http://www.upstate.edu/chp/

The College of Medicine:
http://www.upstate.edu/com

The Central New York Master of Public Health:
http://upstate.edu/cnymph

The College of Nursing:
http://www.upstate.edu/con/

Student Life – Academic Resources – Support Services – Student Handbook:
http://www.upstate.edu/currentstudents/
The State University of New York (SUNY) Upstate Medical University encompasses the College of Graduate Studies, College of Health Professions, College of Medicine, College of Nursing, and a clinical system comprising Upstate University Hospital with its downtown and community campuses, the region’s only children’s hospital, and an extensive network of specialty treatment services. Upstate educates physicians, research scientists, nurses, and public health and health care professionals. Upstate also provides graduate medical education, post-doctoral opportunities and a variety of continuing education for health professionals in the region.

Upstate Medical University traces its origins to 1834 when educators founded a medical school at Geneva College to train doctors for communities along the Erie Canal. In 1849, the school gained the distinction of awarding an MD degree to Elizabeth Blackwell, the first woman to graduate with an MD in this country.

In 1871, the medical school dean bought the college’s medical library, anatomical museum, and other tangible assets. He and another Geneva faculty member approached Syracuse University and offered to donate these materials on condition that Syracuse University immediately establish and maintain a medical college consistent with American Medical Association standards. With support from the Onondaga County Medical Society, the Geneva medical faculty joined the Syracuse University College of Physicians and Surgeons, later known as the College of Medicine. In 1875, the new school was the third in the nation to adopt a three-year graded program, preceded only by Harvard Medical School and Chicago Medical College.

In 1936, President Franklin D. Roosevelt laid the cornerstone for a new teaching facility for medical education. This structure, later named Weiskotten Hall after the college’s dean, Herman G. Weiskotten, remains the center of the basic science complex. It houses research laboratories, instructional rooms, the Health Sciences Library and faculty offices.

A program leading to the MS and PhD degrees in biochemistry was initiated in 1947 while the Medical College was still a part of Syracuse University. The program was then incorporated into the Graduate Program of the newly organized State University and expanded to include anatomy, microbiology, physiology and pharmacology, as well as medical technology. Today, the College of Graduate Studies currently offers MS and/or PhD degrees in six biomedical research disciplines.

In 1950, Upstate became part of the State University of New York, a public higher education system that currently includes sixty-four campuses.

The College of Health Professions was added in 1956 and offered a certificate in cytotechnology. The College was officially organized in 1971 to offer associates and bachelor’s degrees in the allied health professions. The college currently offers upper-division and graduate degrees in eight health specialties.

In the late 1970s, the “Clinical Campus” at Binghamton was established. This site offers clinical education programs for third- and fourth-year medical students.

The College of Nursing was established in 1985 with a unique MS degree program for registered nurses and has expanded its offerings to meet the needs of registered nurses in the Central New York region. The College was fully accredited by the National League of Nursing in Fall 1991. It currently offers a BS completion program for RNs, masters programs to become a nurse practitioner, and a DNP program. The College is fully accredited by the Commission on Collegiate Nursing Education.

As the University developed its programs, it also saw great expansion of its physical plant. Growth in the 1960s and 1970s included University Hospital, the Campus Activities Building, Clark Tower residence hall and Jacobsen Hall, which now houses administrative offices. A nine-story addition to Weiskotten Hall, a three-level parking garage, and the Campus West Building were all constructed with both public and private funding.

In 1983, the Regional Oncology Center was built and in 1985 a Pediatric Intensive Care Unit was added to the fourth floor of University Hospital. A day-care center was added in 1991 to meet the needs of Upstate’s students, faculty and staff. The Health Sciences Library was completed in 1995 and the first major expansion of the University Hospital, a $52 million East Wing addition, was completed in 1996. In 2000, the Institute for Human Performance opened to house an array of biomedical scientists, rehabilitation specialists and educators working to reduce the impact of aging, illness and injury. The facility includes the largest block of research space on campus outside Weiskotten Hall, and a major expansion was completed in fall 2013. The Setnor Academic Building opened in the spring of 2007. Expansion of University Hospital to include the Upstate Golisano Children’s Hospital, the only one in the region, was realized in 2009. A new Upstate Cancer Center, the region’s only comprehensive outpatient resource for the treatment of cancer and blood disorders for adults and children, opened in 2014. The New Academic Building opened in 2015 and provides administrative and classroom space for the Colleges of Health Professions and Nursing. A new University Simulation Center opened in the fall of 2019.
By building upon its history and dedication to excellence, Upstate Medical University continues to expand services and to develop resources in virtually every field of medicine, making a major contribution to the quality of life in central New York and beyond.

The mission of SUNY Upstate Medical University is to improve the health of the communities we serve through education, biomedical research and health care.

The vision of Upstate Medical University is “United in expertise, compassion and hope to create a healthier world for all.” The mission and visions are achieved through our shared values. We drive innovation and discovery by empowering our university to bring forth new ideas and to ensure quality; We respect people by treating all with grace and dignity; We serve our community by living our mission; We value integrity by being open and honest to build trust and teamwork and to embrace diversity and inclusion.”

Accreditation

The SUNY Upstate Medical University is accredited by the Middle States Commission on Higher Education (MSCHE), 3624 Market Street, 2nd Floor West, Philadelphia, PA 19104, Phone: 267-284-5000. All educational programs are registered through the New York State Department of Education and are approved by the Veterans Administration for the training of veterans under Public Law 98-358. Program specific accreditation is provided by the following:

College of Health Professions:
Accreditation Review Commission on Education for the Physician Assistant, Inc. (ARC-PA)
12000 Findley Road, Suite 150
Johns Creek, GA 30097
Phone: 770-476-1224

Commission on Accreditation for Respiratory Care (CoARC)
1248 Harwood Road
Bedford, TX 76021-4244
Phone: 817-283-2835

Commission on Accreditation in Physical Therapy Education (CAPTE)
1111 North Fairfax Street
Alexandria, VA 22314
Phone: 703-706-3245

Commission on Accreditation of Allied Health Education Programs (CAAHEP)
1361 Park Street
Clearwater, FL 33756
Phone: 727-210-2350

Joint Review Committee on Education in Radiologic Technology (JRCERT)
20 North Wacker Drive, Suite 2850
Chicago, IL 60606-3182
Phone: 312-704-5300

National Accrediting Agency for Clinical Laboratory Sciences (NAACLS)
5600 North River Road, Suite 720
Rosemont, IL 60018
Phone: 773-714-8880

College of Medicine:
Liaison Committee on Medical Education (LCME)
330 North Wabash Avenue, Suite 39300
Chicago, IL 60611-5885
Phone: 312-464-4933

Middle States Commission on Higher Education (MSCHE)
1007 North Orange Street
4th Floor, MB #166
Wilmington, DE 19801
Phone: 267-284-5011

Council on Education for Public Health (CEPH)
1010 Wayne Avenue, Suite 220
Silver Springs, MD 20910
Phone: 202-789-1050

College of Nursing:
Commission on Collegiate Nursing Education (CCNE)
One Dupont Circle NW, Suite 530
Washington, DC 20036-1120
Phone: 202-887-6791

Discrimination Policy and Title IX

Pursuant to University policy, the University is committed to fostering a diverse community of outstanding faculty, staff, and students, as well as ensuring equal educational opportunity, employment, and access to services, programs and activities, without regard to an individual’s race, color, national origin, religion, creed, age, disability, sex, gender identity, sexual orientation, familial status, pregnancy, predisposing genetic characteristics, military status, domestic violence victim status, or criminal conviction. Employees, students, applicants or other members of the University community (including but not limited to vendors, visitors, and guest) may not be subject to harassment that is prohibited by law, or treated adversely or retaliated against based upon a protected characteristic.

The University’s policy is in accordance with the federal and state laws and regulations prohibiting discrimination and harassment. These laws include the Americans with Disabilities Act (ADA), Section 504 of the Rehabilitation Act of 1973, Title IX of the Education Amendments of 1972, Title VII of the Civil Rights Act of 1964 as Amended by Equal Employment Opportunity Act of 1972, and the New York State Human Rights Law. These laws prohibit discrimination and harassment, including sexual harassment and sexual violence.

Inquiries regarding the application of the Title IX and other laws, regulations and policies prohibiting discrimination may be directed to the Chief Diversity, Equity and Inclusion Officer, Office of Diversity and Inclusion, (Daryll
Assignment of Credit Hours

SUNY Upstate Medical University, as part of the State University of New York, has adopted the Carnegie Unit as a measure of academic credit. This is in compliance with the SUNY Policy on Credit/Contact Hour (Document Number 1305) and the United States Department of Education definition of a credit hour as “an amount of work represented in intended learning outcomes and verified by evidence of student achievement.”

Upstate Medical University offers a variety of instruction type of courses, including the standard lecture and laboratory courses. In addition, as an academic health science center, many of our courses are practicums. Each college reviews and approves their own curriculum. However, all follow the format of a standard credit hour awarded for fifteen 50-minute sessions of classroom instruction with a normal expectation of two hours of outside study for each class session. Therefore, a typical three credit hour course at Upstate Medical University meets for three 50-minute sessions per week for a fifteen-week semester, and thus totaling 45 sessions. Another format commonly used is the practicum course, such as our clinical courses. For these courses, credit is awarded as defined by the State University of New York (Document Number 1305) for full-time independent study. Specifically, for clinical courses that meet full-time, one semester credit hour is awarded for each week of the course. For clinical courses that are not full-time, but rather interspersed with other coursework, one semester credit hour is awarded for every forty-five hours of involvement on the part of the student. As an example, a clinical course that meets for nine hours a week over the course of fifteen weeks would be assigned three semester credit hours.

New courses, revisions to current courses, and the programs of study are each approved through their respective college curriculum committee. It is the charge of each of these Committees to review and approve the curriculum in compliance with all federal, SUNY and national accreditation guidelines. In addition, many programs must be individually accredited by their respective professional organizations. Depending on the College, the approval for all curriculum may only rest with the Curriculum Committee or it may also require approval by the faculty organization of the College.

The ultimate authority for the curriculum of each college rests with the dean of the college who ultimately is responsible for ensuring that programs are reviewed periodically. Usually the review of programs and curriculum is an on-going process with reviews occurring annually based on student feedback, changes in the discipline, and updated accreditation standards as published by the professional organizations. Any significant change in a course or a change in a program of study is required to be approved by the respective Curriculum Committee.

General Education Requirements

Both the State University of New York and the Middle States Commission on Higher Education require students in all undergraduate programs to prepare students in a breadth of general education requirements. The general education program must include the study of quantitative and scientific reasoning, written and oral communication, critical analysis and reasoning, information literacy and technological competency, and values, ethics, and diverse perspectives.

On the basis of their upper-division status and relevant accreditation requirements, the Office of the SUNY Provost has waived several SUNY General Education requirements for undergraduate programs at Upstate Medical University. This waiver was granted based on the fact that all bachelor's degree programs are upper division and students enter with prerequisites of 60 credits, having met most of the knowledge and skill areas required by SUNY GenEd. The remaining GenEd requirements will be completed through their program of study at Upstate. The requirement for mathematics is met as a prerequisite requirement in the College of Health Professions, or by taking statistics in the College of Nursing. Other course requirements in the programs fulfill the Gen Ed distribution requirements as follows: Professional Communications, Professional & Technical Writing (Basic Communication), Research Methods, Research in Nursing (Scientific and Critical Reasoning, Information Management), and Health Care Ethics, Ethics, Nursing and the Health Professions (Values, Ethics and Diverse Perspectives).

More information about General Education Requirements at Upstate is available at www.upstate.edu/prospective/basics/suny_gened_requirem ents.php.
College of Graduate Studies

The College of Graduate Studies educates students to be biomedical research scientists, preparing them for careers in academic medical centers, colleges and universities, biomedical research institutes, the biotechnology industry, and government agencies. The College educates graduate students through its six biomedical science programs, awarding PhD degrees and MS degrees as noted:

- Anatomy: MS
- Anatomy and Cell Biology: PhD
- Biochemistry: MS
- **Biochemistry and Molecular Biology:** PhD
- Microbiology: MS
- **Microbiology and Immunology:** PhD
- Neuroscience: PhD
- Pharmacology: MS and PhD
- Physiology: MS* and PhD*

*Not accepting applicants for 2022-2023, but will be accepting applicants for 2023-2024.

The MD/PhD program at SUNY Upstate Medical University is designed for college graduates who seek the medical training and advanced research skills required for careers in academic medicine and medical research. This eight-year, dual-degree program combines our medical school (College of Medicine) with our graduate school in biomedical sciences (College of Graduate Studies).

Degree and Program Overview

Doctoral Degree

www.upstate.edu/grad/curriculum/phd_degrees.php

The PhD degree – including research, didactic course work and successful defense of a dissertation – is intended to be completed in four to six years.

First Year: All first-year students participate in three lab rotations of their choosing. Lab rotations give students exposure to diverse research environments and help them select a mentor with whom to do their dissertation research. To help students select their rotation labs, the college offers the Graduate Student Research Opportunities course during the first three weeks. In this course, representatives from each of the six biomedical sciences programs describe the research interests of their faculty members. A faculty advisor also helps students select their rotation labs. All first-year students also participate in a core curriculum designed to provide a broad-based education in the biomedical sciences. The first-year core curriculum courses are: Foundations of Molecular and Cellular Biology, covering fundamental and advanced topics in biochemistry, molecular biology and cell biology; Principles of Biostatistics, introducing the basic principles of biostatistic for research; and Journal Club where students practice analyzing papers and giving oral presentations. Beginning in January, students take electives. By the end of the spring semester, students begin focusing on research. Students select a mentor and become affiliated with their mentor's degree granting program at the end of the first year.

Second Year: By the start of the second year, most PhD students have begun work on the research project that will lead to their dissertation. During this year, students take the Responsible Conduct of Scientific Research course, which examines research ethics and the moral and philosophical issues confronting scientists, and continue to take electives based on their research interests as well as courses required by their program. All students take a program specific grant writing course. Students pass a qualifying exam to become candidates for the doctoral degree. This exam is scheduled by the end of the second year.

Later Years: In their second year, students put together a dissertation advisory committee, comprised of three to six faculty members from different departments. The committee meets every six months to review the student's progress, make suggestions and provide direction. To assist in the guidance of a student's career planning, the student and advisor develop a career development plan which is updated and shared annually with the advisory committee to help a student meet their planned goal. After completing their research projects, students write a dissertation and defend it before a dissertation defense committee.

Master’s Degree

www.upstate.edu/grad/curriculum/masters.php

The master's degree program typically takes two to three years to complete. Master's students participate in selected parts of the core curriculum along with PhD students. However, unlike PhD students who usually affiliate with a degree-granting program at the end of their first year, master's students join a degree-granting program from the start. Master's students write and defend a thesis, but they do not take a qualifying exam.

Additional required courses are determined by degree granting program and the advisor.

MD/PhD Program

Upstate Medical University’s MD/PhD Program is designed for individuals interested in pursuing a career as physician-scientists in academic medicine. During the students first two years of training students complete required courses in the College of Medicine curriculum (see College of Medicine section of the Academic Catalogue). They then advance into the laboratory where they spend three to four years completing additional coursework and dissertation research under the
guidance of one of the faculty members in College of Graduate Studies. The time in the laboratory culminates with the defense of the doctoral dissertation, after which students re-enter the College of Medicine to complete their training in the required clinical clerkships and electives. The total time spent in the program should be no more than eight years. Throughout the training students will also participate in MD/PhD specific coursework and activities.

Annual stipends and tuition scholarships are provided for students during enrollment in the MD/PhD program.

MD/PhD students may receive up to but no more than 12 elective credits in the College of Medicine (COM) for research which will count toward fulfilling the COM graduation requirement of 25 elective credits. MD/PhD students must apply for this research credit; please see the Student Handbook for details. Alternatively, MD/PhD students are eligible to apply up to 9 credits from the Grand Rounds Course towards College of Medicine elective credits (see above).

There can be 24 credits transferred from the COM to the College of Graduate Studies (CGS). These credits are based on criteria set forth by the Graduate Programs, the Dean of College of Graduate Studies, and the MD/PhD Program Co-directors. The courses transferred are those that fulfill the CGS core curriculum and correlate with the degree-granting program in which the student is enrolled.

The MD/PhD Grand Rounds course is a required course for all students in all years of the program. MD/PhD students in the first year of their PhD are required to take the MD/PhD grant writing course.

For MD/PhD course descriptions, see below.

Prior to graduation from the program each student must have at least one accepted first-author publication of experimental data from their dissertation work in a peer-reviewed journal.

Graduate Studies Core Curriculum

Course Descriptions

GS604 Graduate Student Research Opportunities
0 Credit Hours
Semester Offered: Fall
Course Description: With one full afternoon per program, each of the six PhD training programs will describe its currently active research projects. This description will be presented in a format which the program’s faculty feels best displays all its research activities. Two major goals of these presentations are to: 1) acquaint the incoming graduate students with the breadth of research being pursued within each graduate program, and 2) to thereby give the incoming graduate students further information upon which to base their own choice of research area and advisor for their dissertations. Prerequisites: None. Textbook(s): None.

GS612 Biomedical Sciences Laboratory Rotations
2 Credit Hours/Rotation
Semester Offered: Year round
Course Description: The purpose of the rotation is to learn new research skills and more about the research of a potential dissertation advisor, and to potentially lay the groundwork for a future dissertation. Biomedical Sciences PhD students are required to do three laboratory rotations, taken consecutively, in the first year. Rotations begin approximately September, January and March. An optional fourth rotation in the summer may be taken. MD/PhD students are required to do two laboratory rotations, one each summer prior to their medical school years one and two (an optional third rotation may be taken). Written report due to Advisor at the end of each rotation. Prerequisites: None. Textbook(s): None.

GS616 Foundations of Molecular and Cellular Biology
4 Credit Hours
Semester Offered: Fall
Course Description: This course provides a comprehensive background for students in the Biomedical Sciences Program. It covers fundamental and advanced topics in biochemistry, molecular biology, and cell biology. Lectures and discussions are based on primary research articles, reference books, and lecture notes. Major divisions of the course are 1) properties of biomolecules, 2) cell organization and regulation, and 3) cell function. Prerequisites: None. Textbook(s): None.

MPHP602 Principles of Biostatistics
3 Credit Hours
Semester Offered: Fall
Course Description: This course introduces the basic principles of biostatistics and requires students to apply these principles to describe and analyze health data. Topics include descriptive statistics, probability distributions, point and interval estimation of population parameters, and hypothesis testing. A variety of one and two-sample tests for continuous and categorical data are covered, as is analysis of variance and regression modeling. Students will learn to analyze data using SPSS software and interpret output and results. Prerequisites: None. Textbook(s): None.

GS637 Responsible Conduct of Scientific Research
2 Credit Hours
Semester Offered: Fall
Course Description: The faculty instructors participate in lecture and discussion with the students. The lecture topics include Authorship, Peer Review and Plagiarism, Conflicts of Interest, Policies on Research Misconduct, Human Subjects, Animal Subjects, and Intellectual Property. Prerequisites: None. Textbook(s): Francis L. Macrina, Scientific Integrity, 4th edition.
GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
1 Credit Hour
Semester Offered: Fall
Course Description: This course gives students the opportunity to read, critically evaluate, and present research articles in a variety of fields. During this course students are expected to develop a high standard of scientific analysis and good public presentation skills. Students will be required to present one to two paper(s) depending on time availability and to actively participate in class discussions when not presenting. Students may also gain experience in peer review at the discretion of the course director.
Prerequisites: None. Textbook(s): None.

For additional Graduate Studies general electives, see course descriptions listed on page 19.

Biochemistry and Molecular Biology Program and Degree Requirements
CIP Code: 26.0202

This program awards:
- PhD in Biochemistry and Molecular Biology
- MS in Biochemistry

Faculty researchers in Biochemistry and Molecular Biology seek to understand the molecular and cellular bases of human health and disease. They apply a broad range of tools ranging from those of structural biology and biophysics to cell biology and genetics. Faculty with expertise in X-ray crystallography, single-molecule electron microscopy, and spectroscopy investigate protein structure, folding, and interactions at the atomic level. Other faculty members employ modern genetics and genomic technologies to integrate the above information with in vivo studies to generate a broader understanding of cellular pathways and systems biology. This comprehensive strategy is reflected by the diverse approaches that our researchers take, from high-resolution structural and single-molecule studies to the use of animals and single-celled organisms to model disease processes and development.

Areas of focus in the Department of Biochemistry and Molecular Biology include membrane and transport protein structure and function, DNA replication and transcription, cellular responses to stress, epigenetics and energy metabolism. These studies impact disorders from cancer to neurodegenerative diseases to pathogenic infections. Our program boasts a robust and long-standing record of extramural funding, particularly from the National Institutes of Health.

PhD Degree Requirements:

Required Graduate Courses:
- GS604 Graduate Student Research Opportunities
- GS616 Foundations of Molecular and Cellular Biology
- MPHP602 Principles of Biostatistics
- GS637 Responsible Conduct of Scientific Research
- GS612 Biomedical Sciences Laboratory Rotations (x3)
- GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
- B617 Methods of Biochemistry and Molecular Biology Research
- B620 Biochemistry Seminar
- B648 Research Design in Biochemistry and Molecular Biology
- B650 Scientific Writing in Biochemistry

Electives: At least 6 credits of Advanced Biochemistry and Molecular Biology elective courses are required. (Note: GS628 Systems Biology of Genetics, Genomics, and Proteomics and PHA615 Apoptosis and Cancer Pharmacology are considered advanced Biochemistry and Molecular Biology courses for this purpose).

Total 90 credit hours (a minimum of 30 Didactic Graduate Course credit hours and a minimum of 30 Research Graduate Course credit hours).

Qualifying Examination (to be scheduled before or during the summer following the student’s second year)

Dissertation Advisory Committee Meetings and Department Research Talk (minimum of one meeting every six months)

Successful Dissertation Defense
MS Degree Requirements:

Required Graduate Courses:
- GS604 Graduate Student Research Opportunities
- GS616 Foundations of Molecular and Cellular Biology
- GS637 Responsible Conduct of Scientific Research
- B609 Biochemistry and Molecular Biology Rotations
- GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
- B620 Biochemistry Seminar

Electives:
At least 3 credits of Advanced Biochemistry and Molecular Biology elective courses are required.

Total 30 credit hours (a minimum of 20 Didactic Graduate Course credit hours and a minimum of 10 Research Graduate Course credit hours).

MS Thesis Committee Meetings (minimum of two meetings per year)

Successful Thesis Defense

Course Descriptions

B609 Biochemistry and Molecular Biology Rotations
2 Credit Hours
Course Coordinator(s): Dr. Patricia Kane
Semester Offered: Year round
Course Description: This laboratory course is primarily intended for Biochemistry graduate students. The course will provide instruction in laboratory techniques commonly used in biochemical and molecular biological laboratories and will aid students in the selection of a research advisor. This course is offered year-round. Research areas covered span the interests of Biochemistry and Molecular Biology program faculty. The grading for laboratory rotations is satisfactory/unsatisfactory. Prerequisites: None. Textbook(s): None.

B617 Methods of Biochemistry and Molecular Biology Research
Variable Credit Hours
Semester Offered: By arrangement only
Course Description: Course deals with individualized laboratory experience. Topics agreed upon by student and faculty sponsor. Often taken between rotations and Thesis research to fulfill credit requirements. Prerequisites: GS612. Textbook(s): None.

B620 Biochemistry Seminar
0 Credit Hours
Semester Offered: Year round
Course Description: Presentations of recent research activities by invited speakers and department members. Prerequisites: None. Textbook(s): None.

B638 Independent Study in Biochemistry and Molecular Biology
1 – 2 Variable Credit Hours
Semester Offered: Year round
Course Description: A tutorial course designed for graduate students in biochemistry, or related disciplines that will involve in-depth review of recent developments in biochemical research. May include 1) literature searches, 2) seminar and/or lectures, 3) hands on experience with new techniques available in the department, and 4) a written report. The purpose of the course is to develop a broad knowledge of the biochemical literature as the student advances in his/her more defined research goals. Prerequisites: General biochemistry or equivalent. Textbook(s): None.

B647 Gene Expression and Epigenetic Regulation
2 Credit Hours
Semester Offered: Spring, even years
Course Description: Gene expression is a fundamental process in all living organisms. Regulation of gene expression determines cell type during development and is required for cells to carry out their functions in response to nutritional, hormonal and environmental signals. At the heart of gene expression is the process of transcribing DNA into RNA. In this course, we will discuss the detailed mechanisms of transcription with a particular emphasis on the role of epigenetic modifications of chromatin in the regulation of transcription. We will use knowledge obtained from the study of a variety of model organisms to illustrate the basic concepts that are conserved throughout evolution, including (but not limited to) the role of histone modifications, chromatin remodeling, the CTD code, non-coding regulatory RNAs, and mechanisms of cell memory. In addition, we will discuss the role of epigenetic mechanisms in imprinting, iPS cell reprogramming, and human disease. The course is organized into both lecture and discussion groups, with opportunities for student participation and presentations. Readings will include contemporary studies from the published literature. Prerequisites: Background in biochemistry and molecular biology Textbook(s): None.

B648 Research Design in Biochemistry and Molecular Biology
3 Credit Hours
Semester Offered: Spring
Course Description: This course promotes the development of critical thinking, experimental designing and scientific writing important to the students’ future career as scientists. The students will gain experience in developing an original dissertation research project and preparing the plan in a formal hypothesis-based research proposal. Students will learn the essential features of grant writing, with the emphasis on developing skills necessary for effectively designing and communicating their research. Prerequisites: General biochemistry or equivalent and with course coordinator approval. Textbook(s): None.
B664 Protein Sorting and Vesicular Trafficking
1 Credit Hour
Semester Offered: Spring, even years
Course Description: The current literature is used to analyze recent discoveries and controversies in protein sorting and trafficking. After an initial review of core material related to the topic, students are assigned papers to read in advance of each class along with questions to think about in relation to the reading assignment. Each class consists of a student presentation(s) of the assigned paper(s) and class discussion of the readings. Grading is based on presentation and class participation. Prerequisites: None. Textbook(s): None.

B665 Bioenergetics and Metabolism
2 Credit Hours
Semester Offered: Spring, odd years
Course Description: This course is taught by Biochemistry faculty specialized in bioenergetics and metabolism. Using both lecture and student-driven discussions, basic principles of metabolism will be discussed and applied in a variety of disease states. This course covers topics including mitochondrial signaling, energy metabolism, nutrient and energy sensing, pH homeostasis, cell signaling in cancer, hypoxia signaling, and oncometabolites in epigenetic regulation. Prerequisites: None. Textbook(s): None.

B666 Protein Structure Determination
2 Credit Hours
Semester Offered: Spring, even years
Course Description: The primary literature will be used to cover advanced topics in determination of protein structure and dynamics. Topics include characterization of protein structure and dynamics by X-ray crystallography, nuclear magnetic resonance, spectroscopy, cryo-electron optical super resolution microscopy, and fluorescence spectroscopy, mass spectrometry, and computational methods. Emphasis is placed on how structure and dynamics of proteins relates to their function and mechanism. Prerequisites: None. Textbook(s): None.
GS637 Responsible Conduct of Scientific Research
GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club

Electives:
GS628 Systems Biology of Genetics, Genomics, Proteomics
A613 Graduate Cellular Anatomy
A614 Contemporary Cellular, Molecular, and Developmental Biology
A615.5 Teaching in Graduate Cellular Anatomy
A621 Neuroanatomy Lab
A622 Developmental Biology
B647 Gene Expression and Epigenetic Regulation
B664 Protein Sorting and Vesicular Trafficking
B666 Protein Structure Determination
N620 Advanced Topics in Receptors and Cell Signaling
N623 Systems Neuroscience
PHA615 Apoptosis and Cancer Pharmacology

Total 90 credit hours (a minimum of 30 Didactic Graduate Course credit hours and a minimum of 30 Research Graduate Course credit hours).

Qualifying Examination (to be completed by the end of the second year)
30 min Departmental Seminar (to be presented within 6 months of qualifying exam)
Department Seminar Series (attendance required at all seminars)
Dissertation Advisory Committee Meetings (minimum of one meeting every six months)
Successful Dissertation Defense

MS Degree Requirements:

Required Graduate Courses:
GS604 Graduate Student Research Opportunities
GS616 Foundations of Molecular and Cellular Biology
A624 Seminar in Cell and Developmental Biology
MPHP602 Principles of Biostatistics
GS637 Responsible Conduct of Scientific Research
GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club

Electives:
GS628 Systems Biology of Genetics, Genomics, Proteomics
A613 Graduate Cellular Anatomy
A614 Contemporary Cellular, Molecular, and Developmental Biology
A617 Methods of Cell and Developmental Research
A621 Neuroanatomy Lab
A622 Developmental Biology
B664 Protein Sorting and Vesicular Trafficking
B666 Protein Structure Determination
N620 Advanced Topics in Receptors and Cell Signaling
N623 Systems Neuroscience
PHA615 Apoptosis and Cancer Pharmacology

Total 30 credit hours (a minimum of 20 Didactic Graduate Course credit hours and a minimum of 10 Research Graduate Course credit hours).

Department Seminar Series
Successful Thesis Defense

Course Descriptions

A613 Graduate Cellular Anatomy
2 Credit Hours
Semester Offered: Spring, even years
Course Description: Graduate Cellular Anatomy provides an opportunity for graduate students to independently visualize cells, tissues, and organs of the human body by direct light-microscopic observation of prepared histologic specimens and develop their teaching and presentation skills. Introductory lectures on the histology of the basic tissue types will be followed by a guided laboratory session where each student will use their own university microscope to explore these tissue types. Course participants will select organ systems of interest and prepare presentations on the histology of those organ systems and present it to the class. Student presentations will also be followed by a laboratory session for students to explore that organ system. Prerequisites: First year core curriculum. Textbook(s): A combined text and color atlas of histology (examples Junquiera, Ross, Wheater, or Kerr).

A614 Contemporary Cellular, Molecular and Developmental Biology
2 Credit Hours
Semester Offered: Fall, odd years
Course Description: This is an advanced course that will use discussions of primary literature, research seminars, and student presentations to explore hypotheses, mechanisms, and methodologies in cellular, molecular, and developmental biology. Prerequisites: A622 or with course coordinator approval. Textbook(s): None.

A615.5 Teaching in Graduate Cellular Anatomy
2 Credit Hours
Semester Offered: By arrangement only
Course Description: This course will provide an opportunity for graduate students to teach a graduate level course through assisting the faculty instructors of Graduate Cellular Anatomy. Prerequisites: A517 or A613. Textbook(s): None.
A617 Methods of Cell and Developmental Research
Variable Credit Hours
Semester Offered:
By arrangement only
Course Description: Methods of research used by the faculty are demonstrated. Problem design and research methods emphasized. Prerequisites: Course coordinator approval.
Textbook(s): None.

A621 Neuroanatomy Lab
2 Credit Hours
Semester Offered: Fall
Course Description: Using a case-based format, this course will provide students an appreciation for the structure and three-dimensional organization of the central nervous system including external and internal anatomy of the central nervous system, functional organization and interconnections of the major brain pathways. Prerequisites: None.
Textbook(s): None.

A622 Developmental Biology
2 Credit Hours
Semester Offered: Spring, odd years
Course Description: This is an introductory graduate course in developmental biology. The course will have two 90-minute sessions per week for 10 weeks. The format will be a mix of lectures and discussions that cover fundamental concepts in developmental biology. Faculty will give lectures and students will participate in group projects and give a journal club style presentation of an assigned research paper. Grades will be based on effectiveness of the presentation, performance on short quizzes and participation in class discussions.
Prerequisites: GS616. Textbook(s): Scott Gilbert, Developmental Biology, 10th edition.

A623 Grant Writing in Cell and Developmental Biology
2 Credit Hours
Semester Offered: Spring
Course Description: Faculty will provide an overview of grant writing style and mechanics and provide examples of grants written in common formats for private and government agencies. Students will write their own grants, limited to ten pages, excluding Abstract and Bibliography, and otherwise following the style of the current NIH R01 grant. Each mentor-student pair may follow their own timetable towards completion by semester’s end. Students and mentors are encouraged to review writing progress and provide feedback frequently.
Prerequisites: GS616 and with course coordinator approval. Textbook(s): None.

A624 Seminar in Cell and Developmental Biology
1 Credit Hour
Semester Offered: Year round
Course Description: Graduate students and faculty will meet throughout the year to participate in formal public seminars. Seminars will be given by invited speakers, faculty candidates, department faculty and students. Students are required to present a 30 minute seminar on their research within six months of passing their qualifying exam and at least one 30 minute research seminar annually thereafter. Students will receive written, constructive feedback on their presentations from both faculty and students. It is recommended that student presentations are coordinated with their thesis advisory committee meetings when possible. Students are also expected to meet with invited speakers over lunch to discuss their research as well as career development/opportunities. Prerequisites: None. Textbook(s): None.

A700 Research in Cell and Developmental Biology
Variable Credit Hours
Semester Offered: Year round
Course Description: Original dissertation research in cell and developmental biology under faculty supervision. Prerequisites: None. Textbook(s): None.

Microbiology and Immunology
Program and Degree Requirements
CIP Code: 26.0508
This program awards:
▪ PhD in Microbiology and Immunology
▪ MS in Microbiology

Major research areas in the Department of Microbiology and Immunology are in diseases caused by viruses, the host response to infection, and the development and function of the immune system. A range of viruses are studied, including dengue virus, cytomegalovirus, varicella zoster virus, and Zika virus. The focus of virology research is on pathogenesis, gene regulation, molecular interactions between the virus and host cell, and antiviral agents. Immunology research focuses on autoimmune diseases and the role of innate and adaptive immune responses in development, infectious disease and cancer. A major focus of our immunology research is immunoreceptor signaling. Research is conducted at the molecular, biochemical, genetic and population levels with goals of developing vaccines and therapeutics of infectious diseases and cancer.
PhD Requirements:

Required Graduate Courses:

First and Second Years:
- GS604 Graduate Student Research Opportunities
- GS612 Biomedical Sciences Laboratory Rotations (x3)
- GS616 Foundations of Molecular and Cellular Biology
- MPHP602 Principles of Biostatistics
- GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
- GS637 Responsible Conduct of Scientific Research
- M627 Introduction to Virology
- M628 Introduction to Immunology
- M616 Current Concepts in Virology*
- M610 Problems in Cellular and Molecular Immunology*
- M630 Seminar in Microbiology and Immunology
- M623 Directed Individual Study in Microbiological and Immunological Research Methods
- M609 Grant Writing in Microbiology and Immunology

Third Year & Following Years:
- M700 Research in Microbiology and Immunology
- M630 Seminar in Microbiology and Immunology

*Students must take either 6 credits of both M616 and M610 or 3 credits of one of these advanced courses plus 3 credits of another advanced course offered by College of Graduate Studies degree-granting programs.

Total 90 credit hours (a minimum of 30 Didactic Graduate Course credit hours and a minimum of 30 Research Graduate Course credit hours).

Qualifying Examination (to be scheduled by the end of the second year)

Dissertation Advisory Committee - The committee must meet at least twice per year during the dissertation research period, and committee must sign-off on student’s readiness to write & defend dissertation.

Submission of First-Author (or Co-First-Author) Research Paper - Students in Microbiology and Immunology are required to submit at least one first-author or co-first-author research paper for publication prior to the Dissertation Defense.

Successful Dissertation Defense

MS Requirements:

Required Graduate Courses:

First and Second Years:
- GS604 Graduate Student Research Opportunities
- GS616 Foundations of Molecular and Cellular Biology
- MPHP602 Principles of Biostatistics
- GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
- GS637 Responsible Conduct of Scientific Research
- M627 Introduction to Virology
- M628 Introduction to Immunology
- M616 Current Concepts in Virology*
- M610 Problems in Cellular and Molecular Immunology*
- M630 Seminar in Microbiology and Immunology
- M623 Directed Individual Study in Microbiological and Immunological Research Methods
- M609 Grant Writing in Microbiology and Immunology

Electives:
- M609 Grant Writing in Microbiology and Immunology

*Either M616 for M610 is required.

Total 30 credit hours (a minimum of 20 Didactic Graduate Course credit hours and a minimum of 10 Research Graduate Course credit hours).

Successful Thesis Defense

Course Descriptions

M609 Grant Writing in Microbiology and Immunology
3 Credit Hours
Semester Offered: Spring
Course Description: Students will learn the essential features of writing research proposals, with an emphasis on the requirements of the NIH. In the first half of the course the principles of clear, unambiguous writing will be presented in lectures, accompanied by analysis of good and bad examples. In the second half of the course the students will meet regularly with the course instructor to review their assignments, which will then be revised as necessary in the final sessions of the course the students will meet as a group to review and discuss each other’s proposals. Prerequisites: Thesis advisor must be chosen. Textbook(s): None.

M610 Problems in Cellular and Molecular Immunology
3 Credit Hours
Semester Offered: Fall
Course Description: This is an advanced immunology course that will consist of a number of modules on special topics in immunology chosen by the faculty. Typically, the first session of each
module will provide an overview of the topic, and the second session will be in the form a discussion of the current literature. Students will be asked to participate during the discussion sections. At the end of the semester, each student will give an oral presentation on a special topic of their choosing. Topics will vary with faculty interests, but have included innate immune, macrophage immunity, immunometabolism, T and B lymphocytes, tumor immunity, and autoimmunity. Prerequisites: M628. Textbook(s): Janeway’s, Immunobiology, 9th edition.

M616 Current Concepts in Virology
3 Credit Hours
Semester Offered: Spring
Course Description: The structure, function and replication of important virus groups will be studied. Current research topics and techniques will be reviewed, with an emphasis on molecular and cellular biology, viral pathogenesis, and anti-viral therapy. Prerequisites: M627 or equivalent course of basic virology and GS616. Textbook(s): None.

M623 Directed Individual Study in Microbiological and Immunological Research Methods
Variable Credit Hours
Semester Offered: By arrangement only
Course Description: This is a special research training program designed to acquaint students with specific areas of research and/or use of methods, techniques, or instrumentation, as well as to introduce students intensively to the laboratory, and research approaches. Prerequisites: Declaration in the Microbiology and Immunology program or with program director approval. Textbook(s): None.

M626 Methods of Microbiology and Immunology Research
Variable Credit Hours
Semester Offered: By arrangement only
Course Description: Methods of Research used by the faculty are demonstrated. Problem design and research methods are emphasized. Course deals with individualized laboratory experience. Topics agreed upon by student and faculty sponsor. Prerequisites: GS612 or with course coordinator approval. Textbook(s): None.

M627 Introduction to Virology
2 Credit Hours
Semester Offered: Spring
Course Description: This is an introductory course in virology for graduate students. The objectives are to understand the structure and characteristics of viruses, their replication, interactions with the host, and applications in biomedical science. The material will be presented as lectures and in discussion of primary research articles. Prerequisites: At least one course in Biochemistry and Molecular Biology. Textbook(s): S.J. Fint, et al., Principles in Virology: Molecular Biology, Pathogenesis, and Control, 4th edition (2017).

M628 Introduction to Immunology
2 Credit Hours
Semester Offered: Spring
Course Description: This course is intended to be an introductory course in immunology for graduate students. The course goal is to develop a general understanding of immunology including both adaptive and innate immunity. Prerequisites: At least one course in Biochemistry and Molecular Biology. Textbook(s): K. Murphy and C. Weaver, Janeway’s, Immunobiology, 9th edition.

M630 Seminar in Microbiology and Immunology
1 Credit Hour
Semester Offered: Year round
Course Description: Faculty and students will present their research work, in a selected subject area. Meetings will be once a week lasting 60 minutes per session. Prerequisites: At least one microbiology and immunology course or with course coordinator approval. Textbook(s): None.

M700 Research in Microbiology
Variable Credit Hours
Semester Offered: Year round
Course Description: Original research in microbiology for doctoral dissertation. Prerequisites: None. Textbook(s): None.

Neuroscience Program and Degree Requirements
CIP Code: 26.1501

This program awards:
- PhD in Neuroscience

The Neuroscience Graduate Program is a multidisciplinary program divided into three areas: Cell and Molecular Neuroscience, Development and Regeneration, and Systems Neuroscience. Program research relates to many human diseases and disorders, including fetal alcohol syndrome, retinitis pigmentosa, spinal cord injury, Alzheimer’s, multiple sclerosis, cerebral palsy and amyotrophic lateral sclerosis (ALS). Research in Cell and Molecular Neuroscience group the regulation of gene expression in the nervous system, mechanisms of cell signaling and excitability within cells, and the molecular bases of neurological disease and disorders. Research topics in Development and Regeneration include the development of the mammalian cortex, regulation of gene expression during development, neuronal stem cells in the CNS and the eye, and mechanisms of regeneration in the retina, and the spinal cord. Research in Systems Neuroscience focuses on the neural mechanisms that underlie the functions of the olfactory system, the visual system, and motor systems in health and disease. Students can take advantage of a collaborative neuroscience program with neighboring Syracuse University.
PhD Requirements:

Required Didactic Courses (minimum of 30 credits):
The didactic credits requirement is satisfied through 15 credits of required GS coursework and 15 or more credits of Neuroscience courses (up to 2 credits of non-NS courses are accepted without petition).

Required Graduate Courses:
GS604 Graduate Student Research Opportunities
GS612 Biomedical Sciences Laboratory Rotations (x3)
OR
N675 Research Rotations in Neuroscience (x3)
GS616 Foundations of Molecular and Cellular Biology
MPHP602 Principles of Biostatistics
GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
GS637 Responsible Conduct of Scientific Research
N601 Neuroscience
N627 Fundamentals of Grant and Fellowship Applications

Electives:
N610 Topics in Developmental Neurobiology
N616 Topics in Vision I
N617 Methods of Neuroscience Research
N618 Topics in Vision II
N619 Neurobiology of Disease
N620 Advanced Topics in Receptors and Cell Signaling
N621 Neuroanatomy Lab (same as A621)
N623 Systems Neuroscience
N628 Neurobiology of Addiction
N629 Scientific Writing in Neuroscience and Physiology
N630 Independent Study in Neuroscience
N631 Topics in Neuroscience (only open to 1st Year students)
N653 Topics in Cellular and Molecular Neurobiology

Total 90 credit hours (a minimum of 30 Didactic Graduate Course credit hours and a minimum of 30 Research Graduate Course credit hours).

Qualifying Examination – to be completed by the end of the second year.

Each student in the Neuroscience Graduate Program is required to attend the complete seminar series and to present a seminar to the members of the Program each year.

Dissertation Advisory Committee Meetings (minimum of one meeting every six months). Successful Dissertation Defense

Course Descriptions

N601 Neuroscience
3 Credit Hours
Semester Offered: Spring
Course Description: Detailed analysis of the anatomy, physiology, and chemistry of the nervous system and behaviors that it mediates. Topics include: neurons and electrochemical properties of neurons, sensory and motor systems, homeostasis, sleep consciousness, learning, and memory. Prerequisites: None. Textbook(s): TBD.

N610 Topics in Developmental Neurobiology
2 Credit Hours
Semester Offered: Fall, even years
Course Description: This course will provide extensive, yet selective, exposure to major issues and events in the development of the nervous system. Topics include: Axis determination and early patterning, Developmental signals and gene regulation, Cell generation/proliferation, Cell migration and guidance, Cell death, Synaptogenesis, and Plasticity.
Prerequisites: N601. Textbook(s): None.

N616 Topics in Vision I
3 Credit Hours
Semester Offered: Fall, odd years
Course Description: The course is a comprehensive study of the eye and visual system. We will examine neuroanatomical, electrophysiological, developmental and evolutionary aspects of vision. The course is a combination of didactic lecture and problem-based learning. Course source material is largely from the original scientific literature. It is particularly appropriate for graduate students intending to conduct original research in the visual system. Prerequisites: N601 strongly recommended. Textbook(s): None.

N617 Methods of Neuroscience Research
3 Credit Hours
Semester Offered: Spring
Course Description: Survey of research methods in neuroscience. Course will include modules on the study of gene expression, morphology of neurons and glia cells, neuronal and glial function, behavior, networks, inheritance, etc. Emphasis is on experimental design, research protocols and data interpretations. Most modules will include both study of theory and actual hands-on practice through in-lab demonstrations of research methods. Prerequisites: GS616.
Textbook(s): None.

N618 Topics in Vision II
2 Credit Hours
Semester Offered: Spring, by arrangement only
Course Description: The course will examine neuroanatomical, electrophysiological, and psychophysical aspects of vision. This is primarily a readings course, with emphasis on original literature. It is particularly appropriate for graduate students intending to conduct original research in the visual system. This second half will focus on visual mechanisms beyond the level of the retina, focusing on the cortical contributions to visual processing and visually-guided behavior.
Prerequisites: N623 strongly encouraged.
Textbook(s): None.

N619 Neurobiology of Disease
2 Credit Hours
Semester Offered: Fall, odd years
Course Description: This course is focused on the fundamental biological mechanisms of neurological and neuropsychiatric diseases such as Alzheimer’s disease and schizophrenia. Prerequisites: None. Textbook(s): None.
N620 Advanced Topics in Receptors and Cell Signaling
1 Credit Hour
Semester Offered: Fall
Course Description: This advanced course will cover a topic in receptors and cell signaling; for example, Netrin signaling, Gprotein-coupled receptors, integrins and cell adhesion, glutamate receptor signaling and LTP, CDKs with emphasis on the neural-specific CDK5, ras signaling and tyrosine kinase-linked receptors, scaffolding proteins. Topics will be covered by a combination of graduate student-specific lectures and tutorials, based on current research papers and associated reviews. Each topic will also include a take-home essay-type examination. Prerequisites: First year core curriculum. Textbook: None.

N621 Neuroanatomy Lab
2 Credit Hours
Semester Offered: Fall
Course Description: Using a case-based format, this course will provide students an appreciation for the structure and three-dimensional organization of the central nervous system including external and internal anatomy of the central nervous system, functional organization and interconnections of the major brain pathways. Prerequisites: None. Textbook(s): None.

N623 Systems Neuroscience
3 Credit Hours
Semester Offered: Fall
Course Description: An exploration of issues and themes in systems neuroscience, focusing on the cooperativity of neurons in circuits, ensembles, representations and pathways, leading to sensation, perception, information processing, cognition and behavior. Course format includes lectures and discussion. Readings include selected textbook chapters and reviews as well as in-depth analysis of original literature. This is an introductory graduate level course that does not assume prior exposure to systems neuroscience beyond the level of N507. Prerequisites: None. Textbook(s): None.

N627 Fundamentals of Grant and Fellowship Applications
3 Credit Hours
Semester Offered: Spring
Course Description: The primary goal of the course is to teach grantsmanship skills that can be leveraged for grant and fellowship applications, with particular focus on the NIH pre-doctoral fellowship format (F31 NRSA). Lectures in the course will describe the process of grant proposal preparation and evaluation, main sections of a grant/fellowship, and strategies to strengthen a grant proposal. Students will complete weekly homework to hone their grant-writing skills and prepare the main sections of a typical F31 NRSA application. Proposal drafts will be reviewed before each class and subjected to group discussions on a weekly basis. The students will be expected to work with their advisors throughout the course in order to develop their proposals. The final proposals will be submitted for intramural review by a panel of advisors and they will be revised by the students as a pre-requisite for their doctoral qualifying exam. Prerequisites: Second year standing or equivalent, must have completed N601. Textbook(s): None.

N629 Scientific Writing in Neuroscience
1 Credit Hour
Semester Offered: Fall
Course Description: This course is required in the second year for all students performing their thesis research in the Neuroscience program. The goal of the course is to develop writing skills, by providing practice and one-on-one instruction in scientific writing. There will be formal class meetings with the instructor for 90 minutes each week for the first part of the course (4 meetings). Students will prepare a draft of a manuscript based on their own research or preliminary results by completing a section of the manuscript for each session on which the instructor(s) and students will provide feedback so that the student can revise each section to complete a final draft by the end of the course. Student will revise the paper, with the direct guidance and final approval of the faculty member. Prerequisites: First year core curriculum. Textbook(s): TBD

N630 Independent Study in Neuroscience
1 – 3 Variable Credit Hours
Semester Offered: By arrangement only
Course Description: A tutorial course designed for graduate students in Neuroscience. The purpose of the course is to develop in-depth knowledge of a field of neuroscience research as a student continues to make progress towards graduation. Student will work with thesis advisor or other expert faculty member. Course activities may include: 1.) Literature surveys, 2.) Seminars and/or lectures, 3.) In-depth critique of literature and/or experimental techniques. Requires fulfillment of a written assignment (e.g., a review of literature for publication). Prerequisites: MBBH101, N601, A507, or N507. Textbook(s): None.

N631 Topics in Neuroscience
1 Credit Hour
Semester Offered: Fall
Course Description: For first year students only, this is a survey course of current research in neuroscience. Members of the Neuroscience Faculty will present specific subfields of neuroscience research focusing on major questions and recent progress. Course will combine a basic introductory lecture (focused on major questions and techniques) with a discussion session to go over a recent research paper. Students will be required to submit written questions for, and actively participate in, the discussion session. The purpose of the course is to familiarize incoming students with major research questions and experimental approaches in neuroscience research. Prerequisites: None. Textbook(s): None.

N653 Topics in Cellular and Molecular Neurobiology
2 Credit Hours
Semester Offered: By arrangement only
Course Description: This course will discuss major issues in Molecular and Cellular Neurobiology, emphasizing contemporary approaches. Prerequisites: First year core curriculum and N601. Textbook(s): None.
N675 Research Rotations in Neuroscience
1-5 Variable Credit Hours
Semester Offered: By arrangement only
Course Description: Methods of research used by the faculty are demonstrated. Problem design and research methods emphasized. Course deals with individualized laboratory experience. Topics agreed upon by student and faculty sponsor. Prerequisites: None. Textbook(s): None.

N700 Research in Neuroscience
Variable Credit Hours
Semester Offered: Year round
Course Description: Original dissertation research in Neuroscience under supervision of a Neuroscience faculty member and monitored by an advisory committee. Prerequisites: None. Textbook(s): None.

Pharmacology
Program and Degree Requirements
CIP Code: 26.1001

This program awards:
- PhD in Pharmacology
- MS in Pharmacology

Current research in the Department of Pharmacology focuses on cancer biology, structure-based drug design, cell signaling, cardiovascular disease, neurodegeneration, stem cells, and the discovery, development and testing of novel therapeutics. This work is supported by external funding, particularly from NIH. To continue this excellent tradition in research and teaching and to keep pace with ongoing changes in pharmacology, our department is enhancing its research strengths and expanding into new research areas.

PhD Requirements:

Required Graduate Courses:
- GS604 Graduate Student Research Opportunities
- GS616 Foundations of Molecular and Cellular Biology
- MPHP602 Principles of Biostatistics
- GS612 Biomedical Sciences Lab Rotations (x3)
- GS637 Responsible Conduct of Scientific Research
- PHA623 Grant Writing in Pharmacology
- GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
- PHA610 Principles of Pharmacology
- PHA645 Pharmacology Seminar

Electives:
- PHA612 Physiology and Pharmacology*
- PHA615 Apoptosis and Cancer Pharmacology*
- PHA618 Current Topics of Pharmacology*
- PHA622 Principles and Practices of Drug Discovery and Development*

*All Pharmacology PhD students must take a minimum of 4 advanced Pharmacology course credits (including credit hours for PHA610).

Total 90 credit hours (a minimum of 30 Didactic Graduate Course credit hours and a minimum of 30 Research Graduate Course credit hours).

Qualifying Examination – to be taken late summer of student’s second year

Dissertation Advisory Committee Meetings (minimum of one meeting every six months)

Successful Dissertation Defense

MS Degree Requirements:

Required Graduate Courses:
- GS604 Graduate Student Research Opportunities
- GS616 Foundations of Molecular and Cellular Biology
- MPHP602 Principles of Biostatistics
- GS637 Responsible Conduct of Scientific Research
- GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
- PHA610 Principles of Pharmacology
- PHA645 Pharmacology Seminar

Electives:
- PHA612 Physiology and Pharmacology*
- PHA615 Apoptosis and Cancer Pharmacology*
- PHA618 Current Topics of Pharmacology*
- PHA622 Principles and Practices of Drug Discovery and Development*
- PHA623 Grant Writing in Pharmacology

*All MS students are required to take minimum of 4 advanced Pharmacology course credits (including credit hours for PHA610). Students can take other elective courses offered by the Department of Pharmacology or by other Departments to fulfill the didactic course requirement. Also, it is suggested that students take Methods of Pharmacology Research (PHA617) in the first year (no more than 4 credits).

Total 30 credit hours (a minimum of 20 Didactic Graduate Course credit hours and a minimum of 10 Research Graduate Course credit hours).

Successful Thesis Defense
Course Descriptions

PHA610 Principles of Pharmacology
1 Credit Hour
Semester Offered: Fall
Course Description: Pharmacology is the study of how drugs react in living organisms, which is consisting of pharmacokinetics (what the body does to a drug) and pharmacodynamics (what the drug does to the body). Pharmacokinetics is the study of absorption, distribution, metabolism, and excretion of drugs (ADME). The physical, chemical and biochemical principles and the dosage (route, dose and frequency) determine the drug concentration at the site of action and the intensity of a drug's effects with time. The formulation of drugs can markedly alter the oral absorption and/or the delivery of drugs to their targeted sites of action. Certain physiological and pathological factors may modify the pharmacokinetics of drugs via altering drug ADME. Pharmacodynamics is the study of the mechanisms of action of drugs and their biochemical and physiological effects, whereas the study of the undesirable adverse effects of drugs is toxicology. In contrast, drug/substance abuse studies how excessive use of psychoactive drugs, such as alcohol, pain medications, or illegal drugs lead to physical, social, or emotional damage. Pharmacogenomics is the study of how acquired and inherited genetic variations affect individual’s drug response. Finally, special areas of pharmacology will be introduced to illustrate the application of pharmacology principles in the treatment of diseases. These principles of pharmacology will be taught in fourteen 1-hour lectures. A minimum of two students must register for this course to be offered. Prerequisites: First year core curriculum. Textbook(s): None.

PHA612 Cardiovascular Physiology and Pharmacology
1 Credit Hour
Semester Offered: Year round
Course Description: This advanced course will cover cardiac anatomy and physiology, basic mechanisms of cardiac arrhythmias, methods of diagnostics and treatment of cardiac diseases, and the mechanisms of action of antiarrhythmic drugs. The course will be run in a small discussion group format. The group will meet once a week to discuss a set of 4-5 topics formulated by the moderator. The students are expected to study the materials independently and be prepared to give a short presentation on any of the topics to the class as well as discuss it with other members of the group. Prerequisites: First year core curriculum. Textbook(s): None.

PHA615 Apoptosis and Cancer Pharmacology
2 Credit Hours
Semester Offered: Spring
Course Description: This advanced course will cover current concepts in cell death and cancer pharmacology, and will specifically address the molecular actions of anti-cancer agents with emphasis on death ligands/receptors, apoptotic machinery, tumor suppressor genes, oncogenes, molecular mechanisms of chemoprevention and anti-cancer drug.

PHA617 Methods of Pharmacology Research
Variable Credit Hours
Semester Offered: By arrangement only
Course Description: Methods of research used by faculty are demonstrated. Problem design and research methods are emphasized. Prerequisites: GS612. Textbook(s): None.

PHA618 Current Topics in Pharmacology
1 Credit Hour
Semester Offered: By arrangement only
Course Description: The purpose of this tutorial course is to develop a student’s knowledge of Pharmacologic research as well as to provide an opportunity for focused study in areas of cell and molecular pharmacology not otherwise covered in the graduate curriculum. The course format may include selected readings, discussions with faculty, seminars, and lectures. Course content should be discussed with the faculty mentor prior to enrollment in the class, and a course outline with possible start and end dates should be prepared and approved by the Pharmacology Program Director. Prerequisites: PHA610. Textbook(s): None.

PHA622 Principles and Practices of Drug Discovery and Development
1 Credit Hour
Semester Offered: Fall
Course Description: The course objective is to help students understand the overall process of drug discovery and development, structure-based drug design, combinatorial chemistry and high throughput screening in drug discovery, in vitro drug screening - identification and optimization of lead compound, mouse models for drug development, early safety and efficacy assessments, pharmacokinetics/toxicology (PK/TOX) studies in drug development, and nanotechnology in drug delivery. Students will be expected to read literatures and think critically about the objectives and experimental designs of the various stages of drug development. Prerequisites: Course coordinator approval. Textbook(s): None.

PHA623 Grant Writing in Pharmacology
3 Credit Hours
Semester Offered: Spring
Course Description: The primary goal is to teach critical thinking, organizational skills and proposal writing using the current NIH R21 format. The course will be divided into 4 sections: (I) introductory sessions concerning the peer review process, application materials, the overall organization of the proposal, hypothesis development, and the setting of deadlines, (II) the development of Specific Aims and then the entire proposal in conjunction with thesis advisors (this will involve regular meetings and discussions between the student and advisor), (III) review and critiquing of the proposals by participating faculty and the class, (IV) revision of the proposal on the basis of critiques and completion of final version. Prerequisites: First year core curriculum and declaration into Pharmacology department. Textbook(s): None.
PH645 Pharmacology Seminar
0 Credit Hours
Semester Offered: Year round
Course Description: Graduate students and faculty will meet every week during the academic year to participate in seminars. Seminars will be given by outside speakers and Departmental members, including Graduate Students who, after their first year, will be required to give one presentation per year. Grades will be assigned based on attendance and performance. Prerequisites: None. Textbook(s): None.

PH653 Pharmacology Laboratory Rotations
Variable Credit Hours
Semester Offered: Year-round
Course Description: Students learn methods of research used by the Pharmacology Faculty. Problem design and research methods are emphasized. Written report required at end of rotation. Prerequisites: None. Textbook(s): None.

PH670 Research in Pharmacology
Variable Credit Hours
Semester Offered: Year round
Course Description: Original dissertation research in Pharmacology under the supervision of a Pharmacology Faculty member and monitored by an advisory committee. Prerequisites: None. Textbook(s): None.

Physiology Program and Degree Requirements
CIP Code: 26.0901

This program awards:

- PhD in Physiology*
- MS in Physiology*

*Not accepting students at this time.

The major research in this department includes endocrinology, exercise science, neurophysiology, and pulmonary and sensory physiology.

Since a number of the Physiology faculty hold primary appointments in clinical departments, the Physiology program is an ideal vehicle for students looking to apply basic science research techniques to clinically relevant biomedical problems such as bone tumors, diabetes, osteoporosis, kidney disease and lung disease.

Experimental approaches range from studies on whole animals and isolated tissues to studies of cellular and molecular events.

Scientific inquiry may include the complex interactions of systems in the whole individual, the orchestration of processes integrating organ and cell function, and/or integration of molecular events within individual cells.

PhD Requirements:
Required Graduate Courses:
GS604 Graduate Student Research Opportunities
GS612 Biomedical Sciences Laboratory Rotations (x3)
GS616 Foundations of Molecular and Cellular Biology
MPHP602 Principles of Biostatistics
GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club
GS637 Responsible Conduct of Scientific Research
PHY627 Fundamentals of Grant and Fellowship Applications
PHY659 Physiology Seminar

Total 90 credit hours (a minimum of 30 Didactic Graduate Course credit hours and a minimum of 30 Research Graduate Course credit hours).

Qualifying Examination to be scheduled at the end of the spring of the second year.

Each student in the Physiology Graduate Program is required to attend the complete seminar series and to present a seminar to the members of the Program each year.

Dissertation Advisory Committee Meetings (minimum of one meeting every six months).

Successful Dissertation Defense

MS Requirements:
Required Graduate Courses:
GS604 Graduate Student Research Opportunities
GS616 Foundations of Molecular and Cellular Biology
MPHP602 Principles of Biostatistics
GS637 Responsible Conduct of Scientific Research
GS892 Introduction to the Presentation and Analysis of Scientific Literature: Journal Club

Total 30 credit hours (a minimum of 20 Didactic Graduate Course credit hours and a minimum of 10 Research Graduate Course credit hours).

Successful Thesis Defense

Course Descriptions

PHY617 Methods of Physiology Research
Variable Credit Hours
Semester Offered: By arrangement only
Course Description: Methods of research used by the faculty are demonstrated. Problem design and research methods are emphasized. Course deals with individualized laboratory experience. Topics agreed upon by student and faculty sponsor. Prerequisites: GS612. Textbook(s): None.
PHY620 Advanced Topics in Receptors and Cell Signaling
1 Credit Hour
Semester Offered: Fall
Course Description: Same as N620 above.

PHY627 Fundamentals of Grant and Fellowship Applications
3 Credit Hours
Semester Offered: Spring
Course Description: Same as N627 above.

PHY658 Directed Individual Study in Physiological Research Methods
Variable Credit Hours
Semester Offered: By arrangement only
Course Description: This is a special research training program designed to acquaint students with specific areas of research and/or the use of methods, techniques and instrumentation. Prerequisites: Declaration in Neuroscience or Physiology. Textbook(s): None.

PHY659 Physiology Seminar
1 Credit Hour
Semester Offered: Year round
Course Description: Graduate students and faculty will meet once every other week during the academic year for the purpose of discussing current topics in neuroscience and physiology and departmental research programs. Outside speakers also participate. Each graduate student is required to present a critical review of a topic in biology during a scheduled meeting. Prerequisites: Declaration in Physiology. Textbook(s): None.

PHY700 Research in Physiology
Variable Credit Hours
Semester Offered: Year round
Course Description: Independent research in preparation for dissertation requirement. Prerequisites: None. Textbook(s): None.

Additional Graduate Courses

GS628 Systems Biology of Genetics, Genomics and Proteomics
4 Credit Hours
Semester Offered: Spring
Course Description: The goal of this course is to train graduate students in modern experimental and theoretical methods of performing systems level investigations that address fundamental and clinically-relevant questions in genetics, genomics and proteomics. The course is divided into 4 sections. Section 1 is an examination of the origins of living organisms, basic genome organization, the basis of genetic diversity, mitochondrial and yeast genetics, and genomic instability. Section 2 is an examination of human genetics, including linkage, association of quantitative trait analysis, as well as transcription factor analysis, epigenetics, microRNA analysis, and immunorepertoire analysis. Section 3 provides in-depth exposure in the use of next-generation sequencing and gene network analysis for monitoring gene expression, the fundamentals of proteomics and metabolomics and sequencing by mass spectrometry, as well as mouse genetics, pharmacogenetics, personalized medicine, and microbiome analysis. Section 4 concludes the course with students developing and presenting their own systems biology research project. Prerequisites: GS616. Textbook(s): None.

GS632 Biomolecular X-Ray Diffraction: Theoretical Basis and Experimental Procedures
4 Credit Hours
Semester Offered: By arrangement only
Course Description: An introduction to the theory and practices of X-ray diffraction and crystallographic methods applicable to the elucidation of structure-function relationships of biological molecules and interactions thereof. The course is designed to provide a comprehensive understanding of the basic principles through in-depth theoretical discussion, extensive problem solving and hands-on experimental and computational steps through the biomolecular structure solution process. Prerequisite: undergraduate (senior level) biochemistry, chemistry, physics or physical chemistry or permission of the course director. Textbook(s): None.

GS638 Teaching for the Basic Scientist
2 Credit Hours
Semester Offered: Spring, odd years
Course Description: This course is for graduate students who want to become course directors and explore the teaching track. Enrollees will learn about design, delivery and assessment of any academic course for adult learners. Students will learn to write learning objectives and plan content as well as deliver content with an emphasis on active learning. The student will also learn appropriate assessment methods that fit the delivery and objectives of the course. Prerequisites: None. Textbook(s): None.
GS643 Introduction to Quality and Compliance for Biotechnology
3 Credit Hours
Semester Offered: Fall, even years
Course Description: This course provides an overview of the skills and knowledge needed to perform and oversee quality and regulatory compliance functions within the biotechnology industry. This introduction in Quality and Compliance for Biotechnology reviews Good Pharmaceuticals Industry Practice (GXP) principles, procedural guidelines, FDA, and other regulations and ethical considerations. Prerequisites: None. Textbook(s): None.

GS647 Nanocourses in Biomedical Sciences
0.5 Credit Hours
Semester Offered: By arrangement only
Course Description: Nanocourses are short courses that meet for a total of ~7-8 hours and typically address a new or evolving area that is not covered by the standard graduate curriculum. The course could be given in a week or two days or even over 7 weeks. Typical nanocourses could involve new methodologies (super-resolution microscopy, microfluidics, proteomics) or could focus on a specific biological entity (exocyst) or could be practical (presenting scientific data using Photoshop and Illustrator). Course could include lecture, discussion, paper presentations, problem solving or other modalities. A full list of courses can be found at http://upstate.edu/grad/curriculum/nanocourses.php. Prerequisites: None. Textbook(s): None.

GS652 Advanced Dissection I
3 Credit Hours
Semester Offered: Fall
Course Description: A practical skill-based course in which students will complete specific dissections upon a cadaver under the supervision of the course director. Course director will provide a rubric of standards for documenting the student’s skills and competencies. There will also be activities that include demonstrating prosected specimens to the COM students, assisting COM students with their dissections, preparing and presenting teaching content with clinical applications, and conducting small group teaching in person or remotely. Each activity will be evaluated by a member of the anatomy faculty team as well as students based on a feedback form. Prerequisites: PHYT601 Gross Anatomy Textbook(s): None.

GS653 Advanced Dissection II
3 Credit Hours
Semester Offered: Spring
Course Description: A practical skill-based course in which students will complete specific dissections upon a cadaver under the supervision of the course director. Course director will provide a rubric of standards for documenting the student’s skills and competencies. There will also be activities that include demonstrating prosected specimens to the COM students, assisting COM students with their dissections, preparing and presenting teaching content with clinical applications, and conducting small group teaching in person or remotely. Each activity will be evaluated by a member of the anatomy faculty team as well as students based on a feedback form. Prerequisites: PHYT601 Gross Anatomy Textbook(s): None.

MD/PhD Courses:
(The courses below are unique to the MD/PhD program)

MDPH601 Research Design for Physician-Scientists
3 Credit Hours
Semester Offered: Fall
Course Description: This course promotes the development of critical scientific writing important to the students’ future career as physician-scientists. The student will gain experience in grantsmanship by writing and presenting an original hypothesis-based research proposal. Students will learn the essential features of scientific writing, with the emphasis on developing skills necessary for crafting an effective grant proposal. Prerequisites: None. Textbook(s): None.

MDPH602 MD/PhD Grand Rounds
Variable Credit Hours
Semester Offered: Year round
Course Description: The MD/PhD Grand Rounds course is required for all MD/PhD students. MSI and MSII students attend Grand Rounds, read assigned papers, and participate in discussion. Students in the PhD years will spend eight clinical hours per month. From each month's clinical experience the student will write up, in detail, a clinical case, reviewing the clinical scenarios, pathophysiology, pharmacology, etc. and also summarize recent advances or gaps in our knowledge with respect to clinical and translation research related to the specific disease and case report. The clinical mentor will review each month's write-up. Once per year, each student will present one of their clinical cases and discuss the chosen case within the context of the basic, clinical and translational research issues discussed in the relevant case report. The student presenter is also responsible for assigning relevant background papers of the Grand Rounds seminar and facilitating discussion. Students will be required to arrange a clinical mentor for each semester of their PhD training. To ensure a breadth of exposure, students will be required to select a minimum of two different clinical areas of experience during the course of their PhD training. MSIII and MSIV student participation is the same as students in the PhD years. Cases will be chosen from clerkships. Prerequisites: None. Textbook(s): None.
The College of Health Professions was formed in 1971, however, programs in the Health Professions have been in existence on this campus since 1956. College of Health Professions' students can choose from eight health care fields. All of the degree programs are transfer programs, either upper division, or graduate programs.

Each curriculum includes courses in professional subject areas, both didactic and clinical. The undergraduate programs include some arts and sciences coursework. The setting and structure of the College of Health Professions provide an opportunity for students in the various programs to learn to practice together as future members of the health care delivery team. The appropriate nationally recognized professional bodies accredit the professional programs, and graduates are eligible to apply to sit for licensure and/or certification immediately upon graduation.

Arts and Sciences

The presence of an Arts and Sciences division, housed within the College of Health Professions, underscores Upstate’s emphasis on excellence in education and dedication to producing informed and responsible health care professionals. Faculty members offer courses in the arts and sciences to undergraduate students in the College of Health Professions and College of Nursing. These offerings include a diverse spectrum of foundation courses in biological and physical sciences, mathematics, English, social and behavioral sciences, education, as well as courses specifically designed for health professionals. Designed to complement and broaden the student’s professional courses, Arts and Sciences classes serve to develop students’ knowledge base, scientific awareness, social sensitivity, critical thinking and problem-solving skills.

The Arts and Sciences courses are a required component in the curricula of the undergraduate programs in the College of Health Professions and the College of Nursing. Students must successfully complete their arts and sciences courses in order to earn a university degree.

Course Descriptions

Biology

BIOC501 Biochemistry (4 Credit Hours): This course is intended to provide a general understanding of the basic principles of biochemistry with an emphasis on their relationship to medicine. Topics will include: protein structure, carbohydrates, lipids, membranes, membrane transport, enzyme kinetics, metabolism and thermodynamics.

BIOC502 Cell and Molecular Biology (3 Credit Hours): This course is intended to provide a general understanding of molecular cell biology including DNA and chromosomes, transcription, protein synthesis, regulation of gene expression, cell structure, organelle function, cytoskeleton, endocytosis and exocytosis, receptors and second messengers, cell proliferation and differentiation, extracellular matrices, and cell adhesion and motility.

BIOL310 Biostatistics (3 Credit Hours): This is a basic course in statistical concepts designed to enable health science professionals to apply basic descriptive and inferential statistical techniques to problems in their field. The topics discussed include descriptive statistics, elementary probability, normal distribution, hypotheses testing, including: t tests, regression and correlation theories; analysis of variance (ANOVA); and chi-squared tests. The use of a computer statistical package will be emphasized.

BIOL340 Physiology (3 Credit Hours): This course covers more advanced principles of human physiology. Aspects of cellular physiology as well as the skeletal muscle, cardiovascular, respiratory, renal, gastrointestinal and endocrine systems are discussed.

BIOL379 Cell and Molecular Biology (3 Credit Hours): This course is designed to introduce the student to fundamental principles of cell biology and related concepts at the molecular level. Topics include molecular and structural organization of the eukaryotic cell, organelle structure and function, membrane structure and transport, cell communication, the cell cycle and programmed cell death, regulation of selected cell activities, cancer, and selected laboratory techniques in cell and molecular biology.

BIOL420 Epidemiology (3 Credit Hours): This course presents epidemiological principles and methods with emphasis on the health status and health needs of a population, on levels of prevention, and on promotion of health strategies.

BIOL451 Research Methods I (1 Credit Hour): This course provides an introduction to concepts essential to research process, theory, construction and practices, in order to assist health professionals in becoming informed and critical consumers of their professional journals and the medical research literature. Topics include literature reviews and research article critiques.

BIOL501 Human Genetics (3 Credit Hours): The course is intended to provide a general understanding of human genetics and its role in medicine including: the chromosomal basis of heredity, cytogenticex, Mendelian inheritance, population genetics, molecular diagnostics, genetic screening, human genome project, cancer genetics, mitochondrial genetics, single-gene disorders, chromosome abnormalities, and multifactorial disorders.

BIOL601 Research Methods II (2 Credit Hours): This course provides an introduction and basic foundation to research process, theory, methods, practices, and statistical concepts with the goal of increasing understanding of how research knowledge is constructed. Will focus on steps involved in the
BIOL602 Blood and Coagulation (1 Credit Hour): This introductory instructive course employs reading, lecture, discussion and demonstration to prepare students to understand blood. Emphasis is placed on the student's ability to describe the composition and function of blood as a vehicle for transport of materials throughout the body, the biologic mechanisms for hemostasis, laboratory techniques for collecting, storing administering blood, and test for monitoring/evaluating blood and hemostasis. Assessment focuses on the student's ability to interpret laboratory values and recommend appropriate treatments within the context of extracorporeal circulation patients.

BIOL603 Introduction to Immunology (1 Credit Hour): This introductory immunology course employs video, reading, lecture and discussion to develop the student's understanding of immunology including both adaptive and innate immunity. Emphasis is placed on the student's ability to describe fundamental principles in immunology and apply them in the context of patients supported with extracorporeal circulation technologies. Assessment focuses on the student's ability to analyze the impact of extracorporeal techniques and technologies on the immune system and recommend a care plan which attenuates the systemic inflammatory response.

BIOL610 Selected Topics in Medical Physiology (4 Credit Hours): This advanced instructive course is linked to the lecture component of the Medical Physiology course in the College of Medicine and employs video, reading, lecture, and discussion. Emphasis is placed on the development of the student's understanding of the cardiovascular, pulmonary and renal systems. Assessment focuses on the student's ability to describe fundamental physiologic principles, analyze physiologic data and evaluate their short term and long-term implications for the critical care patient.

BIOL614 Intro to Molecular Bioinformatics (2 Credit Hours) This course introduces the tools and background knowledge needed to utilize molecular bioinformatic approaches in research. The course begins with an exploration of the origin and analysis of genetic diversity in humans and other organisms and the tools and terminology of bioinformatics. An overview of state-of-the-art tools used to study genetic diversity, gene expression, proteomics, pharmacogenomics, and metagenomics is provided, as well as the methods for examining the association of these types of data with different diseases or traits. Graduate students will complete a capstone project related to a topic of choice covered in the course.

Chemistry

CHEM355 Biochemistry (4 Credit Hours): This course provides an overview of the structure, functions, and reactions of molecules comprising living organisms including carbohydrates, lipids, proteins, vitamins, minerals, nucleic acids as well as intermediate metabolism and enzyme mechanisms.

English

ENGL302 Foundations of Professional Communications I (0.5 Credit Hour): This course is the first course in a two-course sequence that prepares students entering the health professions in the essential areas of professional communication and will be linked to courses identified by the Department of the student’s major area of study. Specifically, course objectives will include optimizing student ability to produce coherent texts within common college-level written forms, demonstrate the ability to revise and improve such texts, research a topic, develop an argument and organize supporting details, and develop proficiency in oral discourse.

ENGL303 Foundation of Professional Communications II (0.5 Credit Hour): This course is the second course in a two-course sequence that prepares students entering the health professions in the essential areas of professional communication and will also be linked to courses identified by the Department of the student’s major area of study. Course objectives and assignments will vary by program of study, and will be dependent on what has previously been accomplished in the context of ENGL302 Foundations of Professional Communications I.

ENGL325 Professional and Technical Writing (3 Credit Hours): This course is founded on the premise that knowing how to use language in various oral and written forms builds skill in research, in reasoning, and in problem solving. Topics include how to create professional written documents such as: memoranda, reports, abstracts, reviews of professional texts, business letters, and résumés. Emphasis is placed on student ability to produce coherent texts, demonstrate the ability to revise and improve such texts, and write a formal proposal or research article.

ENGL332 Understanding the Patient Perspective in Literature (3 credit hours). This course is designed for nurses and other health care professionals. One important aspect of effectively treating patients is being able to empathize with the challenges and struggles of patients dealing with difficult diseases and injuries. In this class, students will read and respond to novels written from the patient perspective.

ENGL333 – Perceiving the Healthcare Profession Through Children’s Literature (3 credit hours) This course uses an inclusive and multicultural approach to studying children’s literature for its social, emotional, educational, and literary values. Designed for healthcare professionals, this course will begin by exploring the characteristics and traits of a number of genres such as fairy tales, humor, poetry, realistic fiction, non-fiction, graphic novels, and fantasy. The course will then focus specifically on how healthcare-related topics such as doctor
visits, illness, experiencing the death of a loved one, mental illness, learning disabilities, and the grief process can be presented to children through quality literature.

ENGL632 Understanding the Patient Perspective in Literature (3 credit hours). This course is designed for graduate students in health professions that involve patient care. One important aspect of effective health care is being able to empathize with challenges and struggles of patients dealing with difficult diseases and injuries. In this class, students will read, respond to, and write about novels written from the patient perspective. They will apply the insight gained from the readings to their clinical education and practice.

Pathology

PATH360 Pathology (3 Credit Hours): This course covers basis pathologic mechanisms and specific diseases/disorders affecting the major organ systems of the human body. Commonly encountered diseases/disorders will be covered in detail. Pathophysiologic mechanisms and concepts are included, especially for most commonly encountered disease states. Topics such as genetics/heredity, immune system disease, and malignant processes are presented as well.

PATH610 Selected Topics in Pathology (3 Credit Hours): This advanced instructive pathology course employs reading, lecture discussion and demonstration to prepare students to understand the physiologic basis for selected disease conditions. Selected topics include adult acquired cardiovascular disease (HTN, DM, CAD, valves, RF, Marfans), congenital cardiac and pulmonary defects (CHD, fetal circulation, CDH, MAS, PHHN, HMD), sepsis, pneumonia, ARDS, and coagulopathy. Assessment focuses on the student's ability to evaluate the impact of pathologic conditions on the patient's health and recommend an appropriate extracorporeal application to improve the patient's condition.

Pharmacology

PHRM301 Pharmacology (2 Credit Hours): This course is designed to introduce students to medical pharmacology. Topics include pharmacokinetics, pharmacodynamics and fundamental principles of drugs that act on the autonomic and central nervous system. Emphasis is placed on the therapeutic effects, clinical applications, and toxicities of drugs used in the treatment of cardiovascular disorders.

PHRM601 Principles of Pharmacology (0.5 Credit Hour): This advanced instructive pharmacology course employs video, readings, lecture and discussion to develop the students understanding of the fundamental principles in pharmacology. Emphasis is placed on the student’s ability to describe fundamental principles in pharmacology and apply them in the context of patients supported with extracorporeal circulation technologies.

PHRM610 Selected Topics in Pharmacology (3 Credit Hours): This advanced instructive pharmacology course employs video, readings, lecture and discussion to develop the students understanding of pharmacologic considerations related to patients supported with extracorporeal circulation technologies. Selected topics include antihypertensive, diuretics, general anesthetics, analgesics, vasopressors, inotropes, antiarrhythmics, anticoagulants, platelet inhibition, acid base, glycemic agents, insulin, steroids and antibiotics.

General Education Requirements

Middle States Commission on Higher Education (Upstate’s regional accrediting organization). They also satisfy the General Education requirements of the State University of New York (SUNY).

On the basis of their upper-division status and relevant accreditation requirements, the Office of the SUNY Provost has partially waived the SUNY General Education requirements for undergraduate programs at Upstate Medical University. This waiver was granted based on the fact that all bachelor's degree programs are upper division and students enter with prerequisites of 60 credits, having met most of the knowledge and skill areas required by SUNY General Education. The remaining General Education requirements will be completed through their program of study at Upstate. The requirement for mathematics is met as a prerequisite requirement in the College of Health Professions, or by taking statistics in the College of Nursing. Other course requirements in the programs fulfill the Gen Ed distribution requirements as follows: Professional Communications, Professional & Technical Writing (basic communication), health care ethics and Research Methods (critical thinking) and demonstrating competence in the use of electronic health records and informatics systems (information management).

Center for Bioethics and Humanities

CBHX315 - Health Care Ethics (2 Credit Hours): This course applies ethical theories and principles to contemporary health care dilemmas. Students learn how ethical principles, such as autonomy, confidentiality, truth-telling, justice, beneficence, nonmaleficence, and informed consent, can be used to resolve particular ethical issues and specific cases, i.e. end of life, the allocation of health care, privacy, reproductive rights, testing and screening, biomedical research, and professional conduct. The course emphasizes critical thinking, case-based analysis, ethical decision-making and problem solving.

CBHX316 - Health Care Ethics, Literature, and Film (1 Credit Hour): The course uses literature and film to explore healthcare ethics issues and dilemmas. By analyzing and interpreting literature, fictional and documentary films, and other cultural and artistic work, students will develop analytical and interpretive skills and gain insights into patients' and communities' perspectives on health and healthcare. Students will apply ethical principles and theories to the social and cultural issues that emerge in the literature and film. Issues such as end of life; justice and health disparities; reproductive rights; genetics, testing and screening; biomedical research; empathy, and moral and professional conduct will be explored. The course develops critical thinking, narrative-based analysis, interpretative skills, professionalism, and empathy.

Applied Behavior Analysis Studies MS
Program

CIP Code: 422814

Behavior Analysts are licensed health-care professionals who provide therapeutic services for individuals with autism and related disorders. Service delivery might include conducting assessments of problem behavior or language deficits, developing treatments to reduce problem behavior and increase pro-social behavior, consultation, and caregiver training.

Program of Study

Fall Year 1
- ABAS601 Basic Principles of Learning 3
- ABAS606 Record Keeping in Behavior Analysis 2
- ABAS610 Practicum of Fundamental Skills (I) 3

TOTAL 8

Spring Year 1
- ABAS603 Evidence-based Treatments for Autism 3
- ABAS604 Single-case Research Experimentation 3
- ABAS611 Practicum of Fundamental Skills (II) 3

TOTAL 9

Summer Year 1
- ABAS640 Practicum in Behavioral Assessment 3
- ABAS690 Behavioral Analysis Thesis Proposal 3
- ABAS623 School-based Consultation for Autism 3

TOTAL 9

Fall Year 2
- ABAS621 Assessment and Treatment of Child Behavior Disorders 3
- ABAS700 Behavior Analysis Thesis* 3
- ABAS641 Practicum in Autism Spectrum Disorder 3

TOTAL 9

Spring Year 2
- ABAS622 Advanced Issues in Applied Behavior Analysis 3
- ABAS642 Practicum in Behavioral Disorders 3
- CVPR700 Behavior Analysis Thesis* 3

TOTAL 9

Summer Year 2
- ABAS 645 Conceptual Foundations in Behavior Analysis 3
- ABAS 644 Practicum in Behavioral Consultation 3
- ABAS602 Ethics in Behavior Analysis 3

* Culminating Event (student will defend thesis during this term)

TOTAL 9

TOTAL CREDIT HOURS 53

Course Descriptions

ABAS601 Basic Principles of Learning (3 Credit Hours): This is an introductory course that will provide an overview of the basic principles of learning. This course will explore learning from a behavior-analytic perspective, focusing on the key theories and concepts used within the field of behavior analysis. The course will consist of a series of lectures, group discussions, and student presentations. Students will be expected to apply knowledge of basic learning principles to address issues of social significance, with a focus on the application of these principles with individuals affected by autism spectrum disorder (ASD).

ABAS602 Ethics in Behavior Analysis (3 Credit Hours): The content in this course will involve both theoretical ethics and specific practice guidelines related to the lawful practice of behavior analysis. The overarching goals of this course are to ensure that students recognize differences between statutes that impact all aspects of ethical behavior in their eventual employment, understand the extent to which conflicting guidelines impact practice, and develop a strong understanding of relevant New York state law and practice guidelines related to the Behavior Analyst license.

ABAS603 Evidence-based Treatments for Autism (3 Credit Hours): After establishing an understanding of autism spectrum disorder ASD and related symptoms, this course will cover treatments that are supported in the literature for both the core and associated symptoms of ASD. Additionally, information will be provided regarding non-evidence-based treatments that receive attention in the ASD community, such that students can be aware of the range of information that is available related to ASD services. The course will highlight research related to evidence-based interventions for communication, social interaction and play, adaptive skill development, and behavioral reduction.

ABAS604 Single-case Research Experimentation (3 Credit Hours): This course will focus on the application of single-case research methodology in the areas of education, autism spectrum disorder, and developmental disabilities. Topics covered will include behavioral measurement, data collection, experimental designs, data interpretation, and reporting of results.

ABAS605 Special Topics in Applied Behavior Analysis: Behavioral Economics (3 Credit Hours): This course will introduce students to theoretical and quantitative approaches to understanding complex human behavior. Focus will be given to choice and decision making, preference, persistence, and relapse. Students will gain exposure not only to the basic laboratory work on which various behavior theories are based but also to applied research that demonstrates the utility of the theories for development of behavioral interventions.

ABAS606 Record Keeping in Behavior Analysis (2 Credit Hours): This course will cover: (1) the data that form the basis of a client’s records for behavior analysts, (2) responsible storage of that data, (3) the mechanisms that govern record keeping, and (4) confidentiality. Throughout the course there will be an emphasis on laws, rules, and regulations set forth by federal and New York State agencies for the protection of client data. The focus will not only be on the maintenance of these records, but also the meaning of that record in terms of protected health information.

ABAS610 Practicum of Fundamental Skills I (3 Credit Hours): This course provides opportunities for students to
attain competence in the knowledge and practical application of behavioral principles and ethical standards in applied settings. Students demonstrate skills and competencies in such areas as behavioral assessment, intervention, consultation, evaluation, and research. The primary focus of this practicum is to develop basic skills related to defining and measuring behavior, data collection, and data analysis.

ABAS611 Practicum of Fundamental Skills II (3 Credit Hours): The course provides opportunities for students to attain competence in the knowledge and practical application of behavioral principles by building on those skills learned during Fundamental Skills I. Students demonstrate competencies in behavioral assessment, intervention, consultation, and evaluation, with a focus on the mastery of skills related to defining and measuring behavior, data collection, data analysis, and interobserver agreement. Additional focus will be given to visual inspection of data and graph production in Excel or SigmaPlot.

ABAS621 Assessment and Treatment of Child Behavior Disorders (3 Credit Hours): This course will cover the processes involved in the assessment of behavior using the techniques of applied behavior analysis. Students will learn the components of indirect assessment, direct observation, functional assessment and functional analysis. Additionally, students will learn how to effectively link assessment to treatment to develop appropriate behavioral intervention plans for a range of childhood disorders.

ABAS622 Advanced Issues in Applied Behavior Analysis (3 Credit Hours): This course will cover topics related to behavioral interventions for specialty topics in applied behavior analysis (ABA) and ASD. A review of the basic principles of ABA and symptoms of autism will be covered. Interventions related to specialized areas of practice (e.g., pediatric feedings disorders) will be discussed. In addition, this course will require students to evaluate current research and identify trends in the literature. This course requires demonstration of the application of ABA principles as they relate to a variety of practice areas.

ABAS623 School-based Consultation for Autism (3 Credit Hours): This course introduces students to the principles underlying effective service delivery in the schools, provides training in the strategies and tactics of school consultation as a combination of problem solving, social influence, and implementation support tasks, and discusses practical models for designing, implementing and evaluating school-based interventions for students with autism spectrum disorders within a tiered service delivery model.

ABAS640 Practicum in Behavioral Assessment (3 Credit Hours): The content of this course provides students with experience in conducting functional behavior assessments, functional analyses of behavior, and brief experimental analyses of treatment options for children, adolescents, or adults. In this course, students practice the principles of applied behavior analysis under close supervision. The course focuses on the mastery of skills related to assessing behavior via stimulus preference assessments, descriptive assessments, the use of behavior rating scales, and functional assessment.

ABAS641 Practicum in Autism Spectrum Disorders (3 Credit Hours): This course includes direct work with students and requires the completion of assessments and interventions with a client with ASD. Content focuses on the mastery of skills related to treating core symptoms of ASD (e.g., communication deficits). Procedures will include prompting strategies, discrete-trial instruction, and extinction, among others. A prerequisite on behavioral assessment is necessary for students to understand the link between assessment and treatment. Students will demonstrate mastery of skills in clinical application.

ABAS642 Practicum in Behavioral Disorders (3 Credit Hours): The goals of this course are to give students experience in conducting functional behavior assessments, and experimental analyses of treatment options for children and adolescents. Specifically, this practicum will focus on treatment development for behavior disorders following functional behavioral assessment. Procedures will include differential reinforcement, functional communication training, response interruption and redirection, and extinction, as well as other clinically indicated procedures.

ABAS 644 Practicum in Behavioral Consultation (3 Credit Hours): A 200-h practicum that focuses on the mastery of skills related to treating the behavioral correlates of patients diagnosed with autism spectrum disorder. For many children, daily clinic appointments are not feasible or the environment in which the behavior occurs cannot be duplicated in an analog setting. In such cases, the behavior analyst may be called upon as a consultant. This practicum will prepare students to engage in such consultation. Students will be taught clinical interviewing skills, how to identify problem behaviors and their function(s), how to arrange at-home data collection, and how to develop, implement, and evaluate function-based treatment plans. Engaged problem solving with caregivers will occur across all aspects of consultation. The practicum experience will occur in-person, in the child's home/school environment, or over telemedicine, depending on the child's needs and the student's ability to work in person. Students will demonstrate mastery of skills in clinical application where they will be supervised by a licensed psychologist or licensed behavior analyst.

ABAS 645 Conceptual Foundations in Behavior Analysis
This class will explore conceptual, behavior-analytic approaches to understanding human and animal behavior. The purpose of this class is to introduce students to different ways to think about common behavioral outcomes and to encourage them to evaluate clinical data from various perspectives. The class will focus on discussion of conceptual and theoretical issues in behavior analysis and conversation about how those issues directly relate to behavior in the real world.

ABAS690 Behavior Analysis Thesis Proposal (3 Credit Hours): The thesis is recognized as a major and independent academic achievement of a graduate student’s career. While the thesis experience is intended to produce a contribution to the professional literature, the thesis represents a creative research effort that should advance the student’s knowledge, skills, and understanding in both the implementation of applied behavior analytic interventions and in appropriate
scientific research methodology. By engaging in this process, students will also develop and establish an area of expertise within the discipline of ABA.

ABAS700 Behavior Analysis Thesis (3 Credit Hours): This course focuses on the design, implementation, and presentation of a research thesis based on a unique, empirical study relevant to the application of behavior analysis to individuals with autism spectrum disorder.
Clinical Perfusion: Masters of Science

Degree Program

CIP Code: 51.0906
http://www.upstate.edu/chp/programs/cp/index.php

Perfusionists are operating room specialists who conduct cardiopulmonary bypass. That is, they pump and oxygenate the blood of patients whose hearts or lungs are stopped, usually during open heart surgery. Occasionally, perfusionists work outside the operating room, providing support for patients with circulatory failure. Working in conjunction with cardiac surgeons, or intensive care providers, perfusionists:

- adjust oxygen levels, change body temperatures, correct electrolyte imbalances and manipulate blood flow to meet each patient’s metabolic need
- administer medications, blood products and fluids
- monitor the coagulation status of a patient’s blood to prevent clotting
- processing the patients’ own blood, and minimize the amount of blood lost during surgery, which minimizes the need for donated blood.

Program of Study for Clinical Perfusion

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>CVPR621 Cardiovascular Perfusion Techniques I</td>
<td>2</td>
</tr>
<tr>
<td>CVPR602 Physiological Assessment</td>
<td>2</td>
</tr>
<tr>
<td>BIOL610 Selected Topics in Medical Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL601 Research Methods</td>
<td>2</td>
</tr>
<tr>
<td>CVPR601 Professional Behaviors and Policy in Clinical Perfusion</td>
<td>2</td>
</tr>
<tr>
<td>CVPR625 Clinical Applications in Perfusion I</td>
<td>3</td>
</tr>
<tr>
<td>CVPR631 Clinical Simulation I: Fundamental Skills</td>
<td>4</td>
</tr>
<tr>
<td>PHRM601 Principles of Pharmacology</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Spring Semester	
CVPR622 Cardiovascular Perfusion Techniques II	2
PHRM610 Selected Topics in Pharmacology	3
PATH610 Selected Topics in Pathology	3
BIOL602 Blood and Coagulation	1
BIOL603 Introduction to Immunology	1
CVPR640 Perfusion Research Proposal	1
CVPR626 Clinical Applications in Perfusion II	4
CVPR632 Clinical Simulation II: Case Management	4
TOTAL	19

Summer Semester	
CVPR611 Extracorporeal Mechanical Circulatory Support	2
CVPR603 Perfusion Safety	2
CVPR627 Clinical Applications in Perfusion III	2
CVPR641 Clinical Perfusion I+	1 - 7 variable
CVPR633 Clinical Simulation III: ECMO	2
CVPR634 Clinical Simulation IV: Crisis Management	2
CVPR690 Capstone Experience*	1 - 10 variable
OR	
CVPR680 Research in Cardiovascular Perfusion*	1 - 10 variable
TOTAL	Minimum of 18

Year 2	
Fall Semester	
CVPR641 Clinical Perfusion I+	1 - 7 variable
CVPR643 Clinical Perfusion IIA+	7
CVPR644 Clinical Perfusion IIB+	7
CVPR690 Capstone Experience*	1 - 10 variable
OR	
CVPR680 Research in Cardiovascular Perfusion*	1 - 10 variable
TOTAL	Minimum of 15

Spring Semester	
CVPR643 Clinical Perfusion IIA+	7
CVPR644 Clinical Perfusion IIB+	7
CVPR645 Clinical Perfusion III	7
CVPR690 Capstone Project Presentation*	1 - 10 variable
CVPR680 Research in Cardiovascular Perfusion*	1 - 10 variable
TOTAL	Minimum of 15

*Either of these courses may be taken to fulfill the 10 credit-hour Selected Elective
+ These courses can be taken either semester they are offered.

TOTAL CREDIT HOURS 86.5

Course Descriptions

CVPR601 Professional Behaviors and Policy in Clinical Perfusion (2 Credit Hours): This introductory instructive course employs reading, lecture, and discussion to prepare students to perceive and appreciate the professional responsibilities and culture of clinical perfusion within a health care system. Examples of national policies and codes of conduct are presented and discussed within the context of the perfusionist's relationship and obligation to their patient, their profession and the industry that supports their field. Assessment focuses on the student's ability to thoughtfully evaluate and defend models of professional behavior as challenged through situational vignettes.

CVPR602 Physiologic Assessment (2 Credit Hours): This introductory instructive course employs reading, lecture, discussion, and demonstration to develop the student's understanding of physiologic monitoring. Emphasis is placed on cardiovascular hemodynamics and pressure monitoring systems and acid-base homeostasis and blood gas assessment for the critical care patient. Assessment focuses on the student's ability to describe and troubleshoot the proper application of the monitoring systems, differentiate between normal and abnormal parameters, predict the implications of each and recommend measures that will remedy abnormal conditions.

CVPR603 Perfusion Safety (2 Credit Hours): This advanced instructive course employs reading, lecture, discussion, and case studies to prepare students to understand and apply the Cumulative Act Effect (Swiss Cheese Model) of accidental causation. The taxonomy and classification of errors, failure domains, and active vs latent failures are presented and discussed within the context of the care of patients supported with extracorporeal circulation technologies. Assessment focuses on the student's ability to analyze case studies of
accidents, summarize the error producing events and design a system which will reduce the risk of failure.

CVPR611 Extracorporeal Mechanical Circulatory Support (2 Credit Hours): This course employs readings, lecture, discussion and demonstration to prepare students to understand and apply extracorporeal technologies to the long-term support of critically ill patients. The design, application and management of ECMO for long term pulmonary support, cardiac support, and VAD is covered in detail. Assessment focuses on the student’s ability to distinguish the best extracorporeal application for a patient’s pathologic condition, design an appropriate extracorporeal system to support the patient, analyze and troubleshoot the performance of the extracorporeal support and patients.

CVPR621 Cardiovascular Perfusion Techniques I (2 Credit Hours): This introductory instructive course employs reading, lecture, discussion, and demonstration to prepare students to apply fundamental principles and basic technologies to cardiopulmonary bypass applications. Emphasis is placed on the design, function, and application of extracorporeal materials and components (tubing, oxygenators, reservoirs filters, pumps, cannulas, etc.). Assessment focuses on the student's ability to perform preoperative calculations and component selection, explain component design characteristics, evaluate circuit configuration and explain their proper application.

CVPR622 Cardiovascular Perfusion Techniques II (2 Credit Hours): This advanced instructive course employs reading, lecture, discussion, and demonstration to prepare student to apply principles and techniques to the practice of extracorporeal circulation. Topics include hemostasis testing, autologous blood preservation, homologous blood component transfusion, hemoconcentration, circuit miniaturization hypothermia, selective perfusion techniques and special patient populations. Assessment focuses on the student's ability to analyze and interpret physiologic and technical data and recommend techniques and technologies which will improve the patient's care.

CVPR625 Clinical Applications in Perfusion I (3 Credit Hours): This introductory delegated applications course employs case-based learning to help the students integrate and assimilate the concepts and principles presented in this semester's instructive coursework through group projects, presentations and discussion based on case studies of patients supported with extracorporeal circulation technologies. Assessment focuses on the student's ability to combine principles and concepts from across the curriculum into discussions of clinical scenarios and recommend appropriate actions.

CVPR626 Clinical Applications in Perfusion II (4 Credit Hours): This advanced delegated applications course is a continuation of CVPR625 Clinical Applications in Perfusion I and employs case-based learning to help the students integrate and assimilate the concepts and principles presented in this semester's instructive coursework through group projects, presentations, and discussion based on case studies of patients supported with extracorporeal circulation technologies. Assessment focuses on the student's ability to combine principles and concepts from across the curriculum into discussions of clinical scenarios and recommend appropriate actions.

CVPR627 Clinical Applications in Perfusion III (2 Credit Hours): This advanced delegated applications course is a continuation of CVPR626 Clinical Applications II and employs problem-based learning to help the students integrate and assimilate the concepts and principles presented in this semester's instructive coursework through group projects, presentations, and discussion based on case studies of patients supported with extracorporeal circulation technologies. Assessment focuses on the student's ability to combine principles and concepts from across the curriculum into discussions of clinical scenarios and recommend appropriate actions.

CVPR631 Clinical Simulation I: Fundamental Skills (4 Credit Hours): This course employs medical simulation to develop the student's knowledge, critical thinking, clinical skills, and professional communication. Students begin to develop competence with the fundamental skills necessary for the safe conduct of cardiopulmonary bypass in the operating room through repetitive mentored practice. Assessment focuses on the student's ability to perform psychomotor tasks, analyze technical and physiologic data and recommend and conduct appropriate actions.

CVPR632 Clinical Simulation II: Case Management (4 Credit Hours): This advanced course employs medical simulation to develop the student's knowledge, critical thinking, clinical skills and professional communication. Students continue to develop competence through repetitive practice during full mission high fidelity simulation of CABG, Valve, DHCA and combined procedures. The assessment rubrics applied during the prerequisite course are expanded in this course to include ancillary perfusion skills, knowledge of the surgical procedures, and anticipation and conduct of perfusionist's interventions appropriately sequenced with the simulated surgical case.

CVPR633 Clinical Simulation III: ECMO (2 Credit Hours): This advanced course employs medical simulation to develop the student's knowledge, critical thinking, clinical skills and professional communication. Students begin to develop competence with the fundamental and crisis management skills of (ECMO) through repetitive practice during simulated standard and crisis situations. Assessment focuses on the student's ability to perform psychomotor tasks, analyze technical and physiologic data and recommend and conduct appropriate actions and demonstrate knowledge of the patient's anticipated clinical course, and anticipation and conduct of perfusionist's intervention.

CVPR634 Clinical Simulation IV: Crisis Management (2 Credit Hours): This advanced course employs medical simulation to develop the student's knowledge, critical thinking, clinical skills and professional communication. Students continue to develop competence with the fundamental skills of cardiopulmonary bypass through repetitive mentored practice during simulated crisis situations and under realistic error producing conditions. Assessment focuses on the student's ability to perform psychomotor tasks,
analyze technical and physiologic data and recommend and demonstrate leadership while conducting appropriate crisis management and crew resource management actions.

CVPR640 Perfusion Research Proposal (1 Credit Hour): This advanced delegated applications course applies the concepts practiced in BIOL 601 Research Methods to the preparation of a proposal for either a research thesis or a capstone experience. Students will complete a proposal and any applications for institutional clearance (IRB, IACUC etc.) necessary for the completion of the proposed project. Research proposals must earn the support of a faculty mentor. Capstone proposals must conform to the department’s menu of currently supported capstone experiences. Assessment is conducted by an advisory committee in accordance with the department’s academic policies.

CVPR641 Clinical Perfusion I+ (1-7 Variable Credit Hours): This introductory clinical preceptorship course is conducted at affiliate institutions. Students are imbedded within clinical perfusion departments and supervised, mentored and assessed by clinical perfusion instructors. Emphasis is placed on the growth and development of the student's knowledge, critical thinking, clinical skills and professional communication while practicing all aspects of the clinical perfusion scope of practice during patient care events. Students must consistently perform at or above the level of ADVANCED BEGINNER to successfully complete this course.

CVPR643 Clinical Perfusion II A+ (7 Credit Hours): This intermediate clinical preceptorship course is conducted at affiliate institutions. Students are imbedded within clinical perfusion departments and supervised, mentored and assessed by clinical perfusion instructors. Emphasis is placed on the growth and development of the student's knowledge, critical thinking, clinical skills and professional communication while practicing all aspects of the clinical perfusion scope of practice during patient care events. Students must consistently perform at or above the level of COMPETENT to successfully complete this course.

CVPR644 Clinical Perfusion II B+ (7 Credit Hours): This intermediate clinical preceptorship course is conducted at affiliate institutions. Students are imbedded within clinical perfusion departments and supervised, mentored and assessed by clinical perfusion instructors. Emphasis is placed on the growth and development of the student's knowledge, critical thinking, clinical skills and professional communication while practicing all aspects of the clinical perfusion scope of practice during patient care events. Students must consistently perform at or above the level of COMPETENT to successfully complete this course.

CVPR645 Clinical Perfusion III (7 Credit Hours): This advanced clinical preceptorship course is conducted at affiliate institutions. Students are imbedded within clinical perfusion departments and supervised, mentored, and assessed by clinical perfusion instructors. Emphasis is placed on the growth and development of the student's knowledge, critical thinking, clinical skills, and professional communication while practicing all aspects of the clinical perfusion scope of practice during patient care events. Students must consistently perform at or above the level of PROFICIENT to successfully complete this course.

CVPR680 Research in Cardiovascular Perfusion (1-10 Variable Credit Hours): Original research in cardiovascular perfusion towards the fulfillment of a master's thesis performed with the mentorship of a faculty member. Assessment is conducted by an advisory committee in accordance with the department’s academic policy.

CVPR690 Capstone Experience (1-10 Variable Credit Hours): This advanced clinical preceptorship course is conducted at affiliate institutions. Students are imbedded within clinical perfusion departments and directly supervised, mentored and assessed by certified clinical perfusion Instructors. Emphasis is placed on the growth and development of the student’s knowledge, critical thinking, clinical skills and professional communication to develop excellence with a professional specialty as approved by the student’s advisor and the clinical site. This experience will be the subject of the students Capstone project which includes a written report and oral presentation in accordance with the departments academic policy.

Clinical Laboratory Science - Medical Biotechnology and Medical Technology: Bachelor of Science Degree Programs

CIP Code: 26.1201
http://www.upstate.edu/chp/programs/mb/index.php

Graduates specializing in medical biotechnology work with a team to conduct medical research in academic or industrial settings. In university laboratories, these individuals assist scientists by performing experiments that are part of a medical research study. In industrial laboratories, biotechnologists help develop and manufacture pharmaceutical drugs or vaccines. Both types of laboratories are involved in research designed to treat or prevent human diseases such as heart disease, cancer, AIDS, genetic diseases, and many others.

Graduates of this program are eligible to sit for the national certifying examination in molecular biology (MB) given by the Board of Certification of the American Society for Clinical Pathology (ASCP).

CIP Code: 51.1005
http://www.upstate.edu/chp/programs/mt/index.php

Medical Technologists (also known as clinical/medical laboratory scientists) develop, perform and supervise laboratory testing that is used to diagnose and treat disease and to provide vital data for research studies. After graduation, many medical technologists work in hospital or physicians' office laboratories conducting a wide range of laboratory measurements—from simple blood tests to complex analyses for cancer, AIDS, viruses, bone marrow abnormalities, therapeutic drug monitoring, infectious disease and molecular diagnoses. Graduates are also prepared for careers that research and develop products used to prevent and treat human disease. They also work in academic settings with medical
scientists performing experiments as part of research studies, or in industrial laboratories producing vaccines and other drugs.

Graduates of this program are eligible to apply for New York State licensure as a Clinical Laboratory Technologist. Graduates are eligible to sit for the national certifying examination given by the Board of Certification of the American Society for Clinical Pathology (ASCP).

While degrees in medical biotechnology or medical technology provides immediate career opportunities after graduation, they are also a good foundation for advanced degrees in medicine or science, or for a career in other medically related fields, such as physician’s assistant.

Programs of Study for Medical Biotechnology (MEDB)-BS and Medical Technology (MEDT)-BS

Programs of study take two years (five semesters).

Prerequisite: 60 semester hours in selected subjects

Junior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM355 Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>PATH360 Pathology</td>
<td>3</td>
</tr>
<tr>
<td>MEDT350 Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MEDT351 Hematology</td>
<td>4</td>
</tr>
<tr>
<td>MEDT308 Seminar in Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>MEDT309 Seminar in Medical Technology 1</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDT303 Immunology</td>
<td>3.5</td>
</tr>
<tr>
<td>ENGL325 Professional & Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>CBHX315 Health Care Ethics</td>
<td>2</td>
</tr>
<tr>
<td>MEDT360 Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>BIOL379 Cell & Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>MEDT424 Medical Mycology/Parasitology</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDT422 Medical Microbiology</td>
<td>6</td>
</tr>
<tr>
<td>MEDT443 Immunohematology</td>
<td>3.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Senior Year (MEDB only)

Fall Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDT439 Applied Techniques in Medical Biotech</td>
<td>2</td>
</tr>
<tr>
<td>BIOL451 Research Methods I</td>
<td>1</td>
</tr>
<tr>
<td>MEDT454 Introduction to Molecular Methods</td>
<td>2</td>
</tr>
<tr>
<td>MEDT522 Advanced Microbiology and Immunology</td>
<td>2</td>
</tr>
<tr>
<td>MEDT445 Statistics in Laboratory Medicine</td>
<td>1.5</td>
</tr>
<tr>
<td>MEDT460 Biotechnology Internship I</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDT419 Research Problem</td>
<td>3</td>
</tr>
<tr>
<td>MEDT455 Laboratory Operations</td>
<td>2</td>
</tr>
<tr>
<td>MEDT444 Principles of Molecular Biology</td>
<td>1</td>
</tr>
<tr>
<td>MEDT461 Biotechnology Internship II</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
</tr>
</tbody>
</table>

Total MEDB SUNY Upstate Medical University Program Credits: 71

Senior Year (MEDT only)

Fall and Spring Semesters

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451 Research Methods I (F)</td>
<td>1</td>
</tr>
<tr>
<td>MEDT401 Clinical Practice Preparation (F)</td>
<td>1.5</td>
</tr>
<tr>
<td>MEDT454 Introduction to Molecular Methods (F)</td>
<td>2</td>
</tr>
<tr>
<td>MEDT441 Clinical Correlations I (F)</td>
<td>1</td>
</tr>
<tr>
<td>MEDT445 Statistics in Laboratory Medicine (F)</td>
<td>1.5</td>
</tr>
<tr>
<td>MEDT453 Capstone Project (S)</td>
<td>1.5</td>
</tr>
<tr>
<td>MEDT455 Laboratory Operations (S)</td>
<td>2</td>
</tr>
<tr>
<td>MEDT442 Clinical Correlations II (S)</td>
<td>1</td>
</tr>
<tr>
<td>MEDT433 Clinical Immunology (F/S)</td>
<td>2</td>
</tr>
<tr>
<td>MEDT436 Clinical Blood Banking (F/S)</td>
<td>3.5</td>
</tr>
<tr>
<td>MEDT427 Clinical Chemistry (F/S)</td>
<td>4</td>
</tr>
<tr>
<td>MEDT429 Clinical Microbiology(F/S)</td>
<td>5</td>
</tr>
<tr>
<td>MEDT425 Clinical Hematology (F/S)</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>31.0</td>
</tr>
</tbody>
</table>

Total MEDT SUNY Upstate Medical University Program Credits: 71.0

Course Descriptions

MEDT303 Immunology (3.5 Credit Hours): Immunology is the study of the immune system and its responses to infectious organisms and other foreign materials. This course presents basic concepts of humoral (i.e. antibody-mediated) and cell mediated immunity, and mechanisms of immunopathogenesis in specific diseases of the immune system. Basic principles of immunochemical and cellular assays are discussed in lecture and applied in exercises performed in the student laboratory.

MEDT308 Seminar in Biotechnology (1 Credit Hour): This course provides an introduction to the role of the baccalaureate level scientist in biotechnology. Course topics include career opportunities in biotechnology, certification routes, principles of quality control and quality assurance, manufacturing practices followed by industrial laboratories, regulatory issues, biosafety, laboratory notebook keeping, and ethical and professional standards.

MEDT309 Seminar in Medical Technology (1 Credit Hour): This course presents an introduction to the medical technologist/clinical laboratory scientist role in health care. Course topics include ethical issues in health care, certification, patient’s rights, community health, resource allocation, as well as the role of the medical technologist/clinical laboratory scientist in research, education, and patient care.

MEDT350 Human Genetics (3 Credit Hours): Introduces students to the genetic concepts and technologies. Basic principles of genetics are presented and applied to the field of laboratory medicine and its role in patient diagnosis. Information related to Mendelian genetics, mitosis and meiosis, DNA, genes and chromosomes, transcription and translation, and mutations serve as a basic foundation for
clinical applications of genetics including cytogenetics, molecular diagnostics, inherited human disorders, genetics of cancer, reproductive technologies, and prenatal diagnosis and genetic counseling.

MEDT351 Hematology (4 Credit Hours): This course consists of lecture and laboratory sessions on the development, morphology, and function of the formed elements of the blood and other body fluids (white blood cells, red blood cells and platelets) and their role in disease processes. Instruction also includes study of the interactions of platelets, coagulation and fibrinolytic factors used in the management of bleeding and thrombotic disorders.

MEDT360 Chemistry (5 Credit Hours): Fundamental aspects of clinical chemistry related to the medical laboratory are presented in this course. Integrated lectures and laboratory sessions focus on pathophysiology of disease and standard practice of clinical laboratory testing in chemistry, including routine urinalysis examination. Emphasis is placed on diagnostic interpretation of biomarker tests and the instrumentation methods used to measure them in blood and other body fluids.

MEDT401 Clinical Practice Preparation (1.5 Credit Hours): This course provides an overview and introduction to the clinical internship/rotation including but not limited to internship expectations, professional behavior and communication, dress code, expectations and competency requirements. The course is also designed to prepare an individual to perform venipuncture and capillary puncture in order to obtain blood specimens for diagnostic procedures and understand the pre- and post-analytical variables that may affect laboratory test results. Laboratory safety, compliance and regulatory issues affecting the clinical laboratory will be reviewed.

MEDT419 Research Problem (3 Credit Hours): Provides experience in completion of an investigation in a selected research topic. The student learns to use research methods under supervision and presents the results in a seminar and written report.

MEDT422 Medical Microbiology (6 Credit Hours): Course content includes integrated lectures and laboratory sessions designed to study bacteria, viruses, and other related organisms which can be pathogenic for humans. Topics include mechanisms of infection, disease states, clinical presentations, and the effect on the human host. Specimen collection and handling, isolation techniques, organism identification, clinical relevance, culture interpretation, susceptibility testing, as well as other methods used in the detection of agents responsible for infection are also covered.

MEDT424 Medical Mycology/Parasitology (2 Credit Hours): The course offers lecture and laboratory experience in medical mycology and parasitology. The mycology portion of the course will cover topics to include the identifying characteristics and pathophysiology of the medically important fungi. The parasitology portion of the course will include topics on parasite life cycles, host-parasite interactions, pathophysiology of parasitic infections and criteria for the identification of protozoa, flagellates, nematodes, cestodes, and trematodes.

MEDT425 Clinical Hematology (5 Credit Hours): Students perform the procedures to detect the hematologic disorders dealing with the cellular and coagulation elements of the blood. Course topics include: routine blood cell counting and coagulation techniques, instrumentation and quality control, as well as specialized tests used to detect anemias and coagulation disorders. Special emphasis is placed on proficiency of differential counting of peripheral blood smears.

MEDT427 Clinical Chemistry (4 Credit Hours): This course involves performing qualitative and quantitative analyses of body fluids such as blood, urine, and spinal fluid. Quality control, which is an essential component of the clinical laboratory, is emphasized together with preventive maintenance of testing equipment. Students learn both operation and application of instrumentation in a clinical chemistry laboratory. Appropriate measures to identify pre-analytical variables affecting sample integrity are taught to students to ensure quality reporting of test results.

MEDT429 Clinical Microbiology (5 Credit Hours): Course content includes clinical instruction and experience in the various areas of microbiology including specimen processing, culturing, culture evaluation and subsequent identification and susceptibility testing of isolates in routine bacteriology, in addition to the specialized diagnostic techniques of mycobacteriology, mycology, parasitology, and virology. Content includes correlation with causes of infectious diseases and current laboratory techniques and practices used to detect and identify causes of infectious diseases.

MEDT433 Clinical Immunology (2 Credit Hours): This course provides practical experience in the clinical immunology laboratory. Students perform routine and specialized procedures in serology and cellular immunology. Lectures and individualized instruction correlate principles of clinical immunology with the laboratory tests performed.

MEDT436 Clinical Blood Banking (3.5 Credit Hours): Students in this course will achieve proficiency in routine ABO and Rh typing and initial antibody identification techniques. Students will develop competence in the performance of reagent quality control, antibody detection, crossmatching, problem solving techniques for the resolution of common ABO typing discrepancies and final antibody identification, antibody elution, and cell phenotyping. The student will also be introduced to the practical aspects of component therapy and quality assurance in Blood Banking including blood utilization and review and blood bank information management systems.

MEDT439 Applied Techniques in Medical Biotechnology (2 Credit Hours): This course focuses on clinical and research applications of advanced laboratory techniques through lectures, discussion, and small group or individual laboratory experiences and assumes prior knowledge of principles of human heredity and basic molecular techniques. Topics include applications of molecular techniques in the diagnosis
of genetic diseases, infections, and malignancies and collection/preparation of blood samples for testing.

MEDT441 Clinical Correlations I (1 Credit Hour): This course is comprised of a variety of case problems that allow students to draw upon foundational knowledge and concepts established in the pre-clinical courses and applied in the clinical rotation setting. The course teaches students to analyze and integrate content from across the different clinical laboratory disciplines as well as laboratory operations and management. Through reiterative application of problem-solving in a student-centered learning environment, this course will develop the students’ skills in critical reasoning and decision making, effective oral communication, efficient utilization of learning resources, and collaborative teamwork.

MEDT442 Clinical Correlations II (1 Credit Hour): This course is comprised of a variety of case problems that allow students to draw upon foundational knowledge and concepts established in the pre-clinical courses and applied in the clinical rotation setting. The course teaches students to analyze and integrate content from across the different clinical laboratory disciplines as well as laboratory operations and management. Through reiterative application of problem-solving in a student-centered learning environment, this course will develop the students’ skills in critical reasoning and decision making, effective oral communication, efficient utilization of learning resources, and collaborative teamwork.

MEDT443 Immunohematology (3.5 Credit Hours): The study of the immunologic characteristics of blood cell antigens and antibodies including the concepts of in vitro hemagglutination test systems and physiologic mechanisms of hemolysis. Major content areas discussed include the blood group systems, blood component preparation, transfusion therapy, and the adverse effects of transfusion. Discussion of the principles and techniques of pretransfusion compatibility testing including antibody identification will be covered in lecture and practiced in laboratory exercises.

MEDT444 Principles of Molecular Biology (1 Credit Hour): The course is designed to prepare students for the American Society of Clinical Pathology national certification exam in Molecular Biology. Online learning modules cover concepts of molecular science, principles of molecular techniques, clinical applications of molecular testing, and laboratory operations necessary for genetic testing.

MEDT445 Statistics in Laboratory Medicine (1.5 Credits): Foundational aspects of statistical methods utilized in clinical and research laboratory settings is the focus of this course. Descriptive analysis will be applied to validation experiments of analytical test methods, setting test reference intervals, and determining diagnostic efficiency calculations used in medical decision making, including the impact of biological variation on test result interpretation and method performance. Advanced concepts of quality control practices will be integrated into the course. Research study design and inferential hypothesis testing are used to address key concepts related to evidence-based laboratory medicine; use of statistical software is integrated within the course for data analysis.

MEDT446 Biotechnology Internship I (8 Credit Hours): This course will provide students with the opportunity to participate in a supervised learning experience that integrates previous academic course work with practical application in a biotechnology laboratory setting. This experience will allow students to acquire knowledge and develop advanced technical skills that are employed in biotechnology.

MEDT447 Biotechnology Internship II (9 Credit Hours): This course will provide students with an opportunity to participate in a supervised learning experience that integrates previous academic course work with practical applications in a biotechnology laboratory setting. The experience can take place in the same laboratory setting experienced by the student in MEDT 460 Biotechnology Internship I, or in a different clinical rotation setting. This experience will allow students to acquire additional knowledge and continue to develop advanced technical skills in biotechnology.

MEDT452 Advanced Microbiology and Immunology (2 Credit Hours): This course will cover current topics in the fields of microbiology and immunology. Each topic will be introduced initially by a lecture presentation, which will be followed by a discussion of current publications on the topic. This course will allow students to develop an appreciation of recent advances in the biology of the immune system and how these relate to defense against infectious disease. The course will also allow students to gain an understanding of the pathological mechanisms of microorganisms and how those mechanisms evolve.
Clinical Laboratory Science - Medical Technology Master of Science Degree Programs

CIP Code: 51.1005
http://www.upstate.edu/chp/programs/mt/index.php

This program provides advanced training to experienced medical technologists. Master's students specialize in one of three areas: chemistry, hematology, or microbiology. Master's students also select a minor area of concentration in either management/supervision, education or basic science.

The Master of Science in Medical Technology consists of a minimum of 24 credit hours of didactic course work and 6 credit hours of thesis work based upon the student's original research. The research project will be under the direction of a doctoral level member of the graduate faculty. It is expected that a full-time student should be able to complete the program in two years.

The course of study the student follows is tailored to the needs of the student as best as possible. The course requirements are printed below based on the area of specialization.

Program of Study for Medical Technology, MS

Core Course Requirements

All Medical Technology M.S. students are required to complete the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC501 Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>MT624 Thesis Proposal</td>
<td>2</td>
</tr>
<tr>
<td>MT700 Thesis</td>
<td>4</td>
</tr>
</tbody>
</table>

Students complete the remainder of their coursework based on their chosen area of concentration:

Clinical Chemistry Program

<table>
<thead>
<tr>
<th>Courses Required</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC501 Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>MEDT624 Thesis Proposal</td>
<td>2</td>
</tr>
<tr>
<td>MT700 Thesis</td>
<td>4</td>
</tr>
<tr>
<td>MEDT626 Clinical Laboratory Statistics</td>
<td>2</td>
</tr>
</tbody>
</table>

Plus one graduate level Biochemistry course (2 Credits or more).

Sufficient elective work to meet the minimum degree requirements and to fulfill the Program of Study as defined by the student’s Academic Advisory Committee.

Clinical Microbiology

<table>
<thead>
<tr>
<th>Courses Required</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC501 Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>MEDT624 Thesis Proposal</td>
<td>2</td>
</tr>
<tr>
<td>MT700 Thesis</td>
<td>4</td>
</tr>
<tr>
<td>MEDT506 Microbiology and Immunology</td>
<td>4</td>
</tr>
<tr>
<td>MT640 Seminar in Clinical Microbiology</td>
<td>1</td>
</tr>
</tbody>
</table>

Suggested courses:

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT615 Research Problem and Practicum in Microbiology</td>
<td>2</td>
</tr>
<tr>
<td>MEDT522 Advanced Microbiology & Immunology</td>
<td>2</td>
</tr>
<tr>
<td>MEDT502 Medical Microbiology</td>
<td>6</td>
</tr>
<tr>
<td>MEDT503 Clinical Microbiology I</td>
<td>5</td>
</tr>
<tr>
<td>MEDT504 Clinical Microbiology II</td>
<td>5</td>
</tr>
<tr>
<td>BIOC502 Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL501 Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MEDT501 Biomedical Laboratory Operations</td>
<td>2</td>
</tr>
</tbody>
</table>

MedPrep/MedScholars

SUNY Upstate Medical University's MedPrep MS in Medical Technology Program offers the opportunity to earn a Master's Degree in Medical Technology in preparation for application to medical school. As a rigorous one-year program, the MedPrep MS in Medical Technology program gives students the opportunity to strengthen and cultivate their academic, clinical and analytical skills. Acceptance into this program guarantees an admissions interview at Upstate Medical University College of Medicine.

<table>
<thead>
<tr>
<th>Courses Required</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC501 Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>MT624 Thesis Proposal</td>
<td>2</td>
</tr>
<tr>
<td>BIOL610 Selected Topics in Medical Physiology</td>
<td>4</td>
</tr>
<tr>
<td>MEDT539 Applied Techniques in Medical Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>MEDT611 Methods in Clinical Laboratory Medicine</td>
<td>2</td>
</tr>
<tr>
<td>GS892 Introduction to Presentation and Analysis in Scientific Literature</td>
<td>1</td>
</tr>
<tr>
<td>PHRM601 Principles of Pharmacology</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Fall Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC501 Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>BIOL610 Selected Topics in Medical Physiology</td>
<td>4</td>
</tr>
<tr>
<td>MEDT539 Applied Techniques in Medical Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>MEDT611 Methods in Clinical Laboratory Medicine</td>
<td>2</td>
</tr>
<tr>
<td>GS892 Introduction to Presentation and Analysis in Scientific Literature</td>
<td>1</td>
</tr>
<tr>
<td>PHRM601 Principles of Pharmacology</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC502 Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL501 Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MEDT501 Biomedical Lab Operations</td>
<td>2</td>
</tr>
<tr>
<td>PHRM610 Selected Topics in Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>MT700 Thesis</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15.0</td>
</tr>
</tbody>
</table>
Course Descriptions

Master of Science

MEDT501 Biomedical Laboratory Operations (2 Credit Hours): This course is designed to develop an increased awareness of the business aspects of the clinical laboratory. Course topics include the following as related to the preanalytical and postanalytical phases of laboratory testing: management principles and processes, regulatory resources, human resources, fiscal resources, quality management, marketing and medical economics.

MEDT502 Medical Microbiology (6 Credit Hours): Through integrated lectures and laboratory sessions medically important bacterial pathogens are discussed in terms of the clinical, therapeutic, and epidemiological aspects of diseases caused by them, molecular mechanisms of pathogenesis and their identification in the clinical laboratory. Specimen collection and handling, isolation techniques, organism identification, clinical relevance, culture interpretation, susceptibility testing, as well as other methods used in the detection of agents responsible for infection are also covered. Prerequisites: 1 year of Biology or permission of instructor.

MEDT503 Clinical Microbiology I (5 Credit Hours): Course content includes clinical instruction and experience in the various areas of microbiology including specimen processing, culturing, culture evaluation and subsequent identification and susceptibility testing of isolates in routine bacteriology, in addition to the specialized diagnostic techniques of mycobacteriology, mycology, parasitology, and virology. Content includes correlation with causes of infectious diseases and current laboratory techniques and practices used to detect and identify causes of infectious diseases. Prerequisite: MEDT422 or MEDT502.

MEDT504 Clinical Microbiology II (5 Credit Hours): The various areas of clinical microbiology including advanced techniques and laboratory testing used in the diagnosis and evaluation of infectious diseases, laboratory management, regulatory requirements, personnel evaluation, and interdepartmental collaboration. Evaluation of new testing methodologies and clinical rotational experiences in infectious disease and infection control will also be included. Lectures and individualized instruction are provided to correlate principles of clinical microbiology with the current laboratory techniques and practices used to detect and identify causes of infectious diseases.

MEDT506 Microbiology and Immunology (4 Credit Hours): This course is designed to give the student insight into the fundamentals of microbiology and immunology with emphasis on its relation to human biology and disease. The course covers the basic properties of microorganisms, microbial physiology and genetics, the principles of microbial pathogenicity, the mode of action of antibiotic and chemotherapeutic agents at the cellular level, the fundamentals of immunology, and the response of the host to infections. The microorganisms studied in this course include the bacteria, fungi, mycoplasmas, rickettsia, chlamydia, viruses and parasites.

MEDT522 Advanced Microbiology & Immunology (2 Credit Hours): This course will cover current topics in the fields of microbiology and immunology. Each topic will be introduced initially by a lecture presentation, which will be followed by a discussion of current publications on the topic. This course will allow students to develop an appreciation of recent advances in the biology of the immune system and how these relate to defense against infectious disease. The course will also allow students to gain an understanding of the pathological mechanisms of microorganisms and how those mechanisms evolve.

MEDT524 Medical Parasitology and Mycology (2 Credit Hours): The course offers lecture and laboratory experience in medical mycology and parasitology. The mycology portion of the course will cover topics to include the identifying characteristics and pathophysiology of the medically important fungi. The parasitology portion of the course will include topics on parasite life cycles, host-parasite interactions, pathophysiology of parasitic infections and criteria for the identification of protozoa, flagellates, nematodes, cestodes, and trematodes.

MEDT539 Applied Techniques in Medical Biotechnology (2 Credit Hours): This course focuses on clinical and research applications of advanced laboratory techniques through lectures, discussion, and small group or individual laboratory experiences and assumes prior knowledge of principles of human heredity and basic molecular techniques. Topics include applications of molecular techniques in the diagnosis of genetic diseases, infections, and malignancies and collection/preparation of blood samples for testing.

MEDT544 Hematology Conference and Tutorial (1.5 Credit Hours): Graduate students will take part in the Hematology Conference in which topics on different aspects of hematology are presented and discussed. The students will be expected to read papers and study assigned case material relevant to the speaker’s subject prior to the conference. Following the conference, the graduate students will meet with the Hematology Faculty (Conference Coordinator) for discussion of questions and issues raised in the conference.

MEDT554 Introduction to Molecular Methods (2 Credit Hours): In this course, students will develop an understanding of the basic principles of laboratory methods in molecular biology. The course will emphasize hands-on experience with a variety of molecular techniques used in clinical laboratory science. Students will also be required to write papers describing the clinical manifestations of two diseases, their underlying genetic basis and molecular pathology, and the molecular techniques used in their diagnosis.

MEDT611 Methods in Clinical Laboratory Medicine (2 Credit Hours): In this course, students will develop an understanding of the techniques and methods used in the modern clinical laboratory. The course consists of lectures covering theoretical aspects of important laboratory assays and provides hands-on experience performing specific assays.
MT615 - Research Problem and Practicum in Microbiology (1-5 Credit Hours): Laboratory research experience with research time agreed upon by student and instructor that includes independent research experience covering topics in microbiology. Specific topics determined through consultation between student and appropriate faculty member. Tutorial conferences, discussions, and critiques scheduled as necessary. Grading determined by the instructor and could include, but not required, evaluation of skills learned, data obtained, and laboratory notebook record keeping and a final written report. Fall or Spring. Prerequisite: Permission of instructor.

MEDT624 Thesis Proposal (2 Credit Hours): This course will be the first course to be taken for Master’s Thesis credit in medical Technology. Under the supervision of a research advisor, the student will prepare an outline, abstract, and referenced review paper describing the problem to be studied, including the background and goals of the proposed study, significance of the problem, and methodological approach to be used in solving the problem. A grade of pass/satisfactory must be received in this course prior to enrollment in MT700 Thesis.

MEDT626 Clinical Laboratory Statistics (2 Credit Hours): This course is designed to introduce students to analytical method validation and quality assurance of patient test results, as applied to clinical laboratory medicine. Students will learn to design appropriate experiments and interpret data by performing calculations; use of statistical software is integrated within the course. Internal and external quality control analysis will be emphasized. As part of the course, students will develop an individualized quality control plan (IQCP) according to published recommendations. Medical decision making based on clinical laboratory test reference intervals and diagnostic efficiency measures are discussed through use of statistical calculations.

MT628 Clinical Chemistry Conference (1 Credit Hour): Consisting primarily of special topics in Clinical Chemistry. This course is part of the Clinical Pathology Residents conference which is scheduled biweekly. This course is available from September through June each year. Arrange with Chemistry Teaching Supervisor for specific attendance schedule. Each student will make one presentation. Student evaluation consists of a criterion-based review.

MT631 Teaching Practicum in Instrumentation (1 Credit Hour): Allows students to gain experience in course development, lecture presentation, lab preparation and student evaluation. The student prepares a course outline, writes objectives, presents at least six lectures, assists in preparing student labs, writes examinations, and develops evaluation instruments for the students. Opportunity for self-observation and critique is provided through the use of videotape. The student works with the faculty and assists in MEDT 360 Chemistry. Student evaluation consists of written assignments, lecture presentations, and criterion base review.

MT635 Computer Utilization in the Laboratory (1 Credit Hour): Introduces the basic mode of computer operation and the use of computers in the clinical laboratory.

MT640 Seminar in Clinical Microbiology (1 Credit Hour): Specialized topics in specific areas of Clinical Microbiology will be presented and discussed in weekly Clinical Microbiology conferences. Students are expected to read papers relevant to the conference’s subject prior to the conference. Students are required to give at least two presentations to successfully complete this course. Course may be repeated once during the alternate semester so that a fall-spring semester sequence is completed.

MT641 Teaching Practicum in Microbiology (1-4 Credit Hours): The course is designed to provide students with experiences that will allow for the development of skills for effective undergraduate teaching. Course activities may include the development and presentation of lectures, leading discussion or review sessions, assisting in laboratory sessions, or development of materials for distance education. Additional activities may include development of written tests, one-on-one evaluations, or evaluation of oral presentations. Specific activities will be determined through consultation between student and faculty member. Grading determined by instructor.

MT642 Teaching Practicum in Immunology (3 Credit Hours): Provides practical experience in the preparation and delivery of undergraduate level instruction. The student is required to deliver four didactic presentations, and participate in the preparation and supervision of two laboratory sessions in the undergraduate Medical Technology course, MEDT 303 Immunology. For each didactic session, the student develops instructional objectives, a lesson plan, visual aids, and examination questions. Evaluation is based on the preparation and delivery of each lesson plan, and a written paper covering one aspect of education theory.

MT643 Hematology Journal Club (1 Credit Hour): Graduate students, residents, fellows and faculty will meet every other week during the academic year for the purpose of discussing current articles published in the area of hematology. The graduate student is expected to read the assigned papers prior to the day of presentation and to take part in the discussion of the articles. The student is expected to present and discuss papers in rotation (at least 2 articles during the academic year.)

MT645 Hematopathology (2 Credit Hours): This course will provide a basic understanding of hematopathology and related areas. Subjects covered in the course include erythropoiesis and anemias, leukocytic disorders, leukemias, lymphoproliferative disorders myeloproliferative disorders, platelets and platelet disorders, blood coagulation, and transfusion therapy. The lectures, laboratories, and seminars are taken with the second year medical students as part of the medical school pathology course.

MT646 Hematology Bone Marrow Practicum (2 Credit Hours): Provides tutorial instruction in the morphology, cytochemistry, and immunohistochemistry of bone marrow, peripheral blood, and lymph nodes in the diagnosis and understanding of hematologic disease. Includes both microscopic and flow cytometric analysis. The student
analyzes and writes reports and interpretations for a minimum of 15 bone marrow cases. Each case is reviewed and discussed in detail with the hematopathology fellow or attending pathology faculty member.

MT647 Special Hematology (1.5 Credit Hours): Provides instruction in the use of laboratory testing in the identification of various hemolytic anemias, and disorders of hemostasis and various coagulations factors. The student works with faculty and staff in the Special Hematology - Coagulation Laboratory studying the theory, performance and interpretation of laboratory testing.

MT648 Teaching Practicum in Hematology (3 Credit Hours): Provides practical experience in the preparation and delivery of undergraduate level instruction. The student is required to prepare a minimum of three lecture units including instructional objectives, lesson plans, visual aids, and examination questions. The student also assists in all laboratory sessions, and prepares and supervises in at least two laboratory sessions. Evaluation is based on the preparation and delivery of lectures and laboratory sessions, and a written paper covering one aspect of educational theory.

MT700 Thesis (4 Credit Hours): Independent research under the supervision of a faculty member.

Medical Imaging Sciences: Bachelor of Science and Bachelor of Professional Studies Degree Programs
HEGIS Code: 1225
CIP Code: 51.0911
http://www.upstate.edu/chp/programs/mi/index.php

Medical Imaging Science professionals use a variety of computer/digital technologies to generate images for the diagnosis and treatment of disease. These professionals have a high level of patient contact for which strong interpersonal skills are critical. They work in hospitals, clinics, physicians’ offices, and imaging centers. Avenues for career development include leadership roles as supervisors, administrators, educators, and researchers. Our medical imaging sciences program educates students in the use of high-tech equipment and procedures to produce:
- Radiographic images (X-rays)
- Computed Tomography images (CTs)
- Magnetic Resonance Images (MRIs)
- Diagnostic Medical Sonography (Ultrasound) images

Program of Study for Bachelor of Science Programs

This upper-division program takes two years (five or six consecutive semesters) with students placed in one of three tracks in the second semester: Radiography (X-ray); Radiography CT, or Radiography MR. (Students who choose to pursue a BS in ultrasound apply directly to that program.) All graduates are eligible to take the national certification exams in their chosen modality.

Radiography Track, B.S.

Junior Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG300 Imaging Practicum I</td>
<td>1</td>
</tr>
<tr>
<td>IMAG301 Positioning Principles I</td>
<td>2</td>
</tr>
<tr>
<td>IMAG302 Positioning Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>IMAG311 Fundamentals of Imaging and Physics</td>
<td>6</td>
</tr>
<tr>
<td>RDSC326 Radiologic Science Patient Care</td>
<td>2</td>
</tr>
<tr>
<td>IMAG329 Radiographic/Topographic/Sectional Anatomy</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451 Research Methods I</td>
<td>1</td>
</tr>
<tr>
<td>ENGL325 Professional and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>IMAG415 Imaging Clerkship I</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS 65

Computed Tomography (CT) Track, BS

Junior Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG300 Imaging Practicum I</td>
<td>1</td>
</tr>
<tr>
<td>IMAG301 Positioning Principles I</td>
<td>2</td>
</tr>
<tr>
<td>IMAG302 Positioning Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>IMAG311 Fundamentals of Imaging and Physics</td>
<td>6</td>
</tr>
<tr>
<td>RDSC326 Radiologic Science Patient Care</td>
<td>2</td>
</tr>
<tr>
<td>IMAG329 Radiographic/Topographic/Sectional Anatomy</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>
Magnetic Resonance (MR) Track, BS

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>12</td>
<td>BIOL451 Research Methods I</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>ENGL303 Foundations of Professional Communications I</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CBHX315 Health Care Ethics</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>IMAG303 Imaging Practicum I</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG304 Positioning Principles I</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG305 Positioning Laboratory I</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>IMAG313 Evaluating Radiographs II</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>IMAG324 Radiation Biology & Protections</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Semester</td>
<td>9.5</td>
<td>IMAG306 Imaging Practicum III</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>IMAG308 Positioning Principles III</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>IMAG314 Evaluating Radiographs III</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>IMAG315 Positioning Laboratory III</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>15</td>
<td>IMAG401 Imaging Practicum V</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG410 Quality Management in Medical Imaging</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>IMAG411 Imaging Pathology</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG418 Advanced Imaging Procedures CT – II</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>IMAG435 Advanced Imaging Practicum CT – II BS</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Semester</td>
<td>4</td>
<td>IMAG402 Imaging Practicum VI</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>IMAG457 Advanced Imaging Practicum MR – III BS</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS

77

Diagnostic Medical Sonography (Ultrasound), BS

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>1</td>
<td>BIOL451 Research Methods I</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>ENGL303 Foundations of Professional Communications I</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG327 Topographic/Sectional/Imaging Anatomy for Medical Sonographers</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG461 Ultrasound Physics & Instrumentation I</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>IMAG472 Abdominal Ultrasound</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester</td>
<td>2</td>
<td>CBHX 315 Health Care Ethics</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IMAG462 Ultrasound Physics & Instrumentation II</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>IMAG475 Obstetrics and Gynecology Ultrasound</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>IMAG480 Clinical Practicum I</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Summer Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG476</td>
<td>Obstetrics and Gynecology Ultrasound II</td>
<td>2</td>
</tr>
<tr>
<td>IMAG481</td>
<td>Clinical Practicum II</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Senior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL325</td>
<td>Professional and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>IMAG477</td>
<td>Interventional Ultrasound</td>
<td>1</td>
</tr>
<tr>
<td>IMAG478</td>
<td>Ultrasound of Superficial Structures</td>
<td>1</td>
</tr>
<tr>
<td>IMAG482</td>
<td>Clinical Practicum III</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG411</td>
<td>Imaging Pathology</td>
<td>3</td>
</tr>
<tr>
<td>IMAG465</td>
<td>Ultrasound Senior Project</td>
<td>1</td>
</tr>
<tr>
<td>IMAG483</td>
<td>Clinical Practicum IV</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS

69

Program of Study for Bachelor of Professional Studies (BPS)

This upper-division transfer program requires an associate's degree and certification in medical radiography. This is a program for radiography students who wish to pursue specialty education in CT, MRI or Sonography. The CT and MRI programs take three consecutive semesters to complete, while the diagnostic medical sonography program requires five consecutive semesters. All graduates are eligible to take national exams in their field. Students rotate through clinical education settings throughout New York State.

Computed Tomography (CT) Track, BPS

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451</td>
<td>Research Methods I</td>
<td>1</td>
</tr>
<tr>
<td>ENGL325</td>
<td>Professional and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>PATH360</td>
<td>Pathology</td>
<td>3</td>
</tr>
<tr>
<td>IMAG417</td>
<td>Advanced Imaging Procedures CT – I</td>
<td>4</td>
</tr>
<tr>
<td>IMAG430</td>
<td>Advanced Imaging Practicum CT – I BPS</td>
<td>6</td>
</tr>
<tr>
<td>IMAG329</td>
<td>Radiographic/Topographic/Sectional Anatomy</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMA420</td>
<td>Health Care Ethics</td>
<td>3</td>
</tr>
<tr>
<td>IMAG411</td>
<td>Imaging Pathology</td>
<td>3</td>
</tr>
<tr>
<td>IMAG412</td>
<td>Management Practices</td>
<td>2</td>
</tr>
<tr>
<td>IMAG418</td>
<td>Advanced Imaging Procedures CT – II</td>
<td>2</td>
</tr>
<tr>
<td>IMAG432</td>
<td>Advanced Imaging Practicum CT – II BPS</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG436</td>
<td>Advanced Imaging Practicum CT – III</td>
<td>10</td>
</tr>
<tr>
<td>IMAG471</td>
<td>Contemporary Issues in Medical Imaging</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS

48

Magnetic Resonance (MR) Track, BPS

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451</td>
<td>Research Methods I</td>
<td>1</td>
</tr>
<tr>
<td>ENGL325</td>
<td>Professional and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>PATH360</td>
<td>Pathology</td>
<td>3</td>
</tr>
<tr>
<td>IMAG451</td>
<td>Advanced Imaging Procedures I-MR</td>
<td>5</td>
</tr>
<tr>
<td>IMAG452</td>
<td>Advanced Imaging Practicum I MR</td>
<td>5</td>
</tr>
<tr>
<td>IMAG329</td>
<td>Radiographic/Topographic/Sectional Anatomy</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMA420</td>
<td>Health Care Ethics</td>
<td>3</td>
</tr>
<tr>
<td>IMAG411</td>
<td>Imaging Pathology</td>
<td>3</td>
</tr>
<tr>
<td>IMAG412</td>
<td>Management Practices</td>
<td>2</td>
</tr>
<tr>
<td>IMAG454</td>
<td>Advanced Imaging Procedures MR – II</td>
<td>2</td>
</tr>
<tr>
<td>IMAG455</td>
<td>Advanced Imaging Practicum MR – II BPS</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG459</td>
<td>Advanced Imaging Practicum MR – III BPS</td>
<td>10</td>
</tr>
<tr>
<td>IMAG471</td>
<td>Contemporary Issues in Medical Imaging</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS

48

Ultrasound Track, BPS

Junior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451</td>
<td>Research Methods I</td>
<td>1</td>
</tr>
<tr>
<td>BIOL340</td>
<td>Advanced Physiology</td>
<td>3</td>
</tr>
<tr>
<td>IMAG327</td>
<td>Topographic/Sectional Imaging Anatomy for Medical Sonographers</td>
<td>3</td>
</tr>
<tr>
<td>IMAG461</td>
<td>Ultrasound Physics & Instrumentation I</td>
<td>2</td>
</tr>
<tr>
<td>IMAG472</td>
<td>Abdominal Ultrasound</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBHIX 315</td>
<td>Health Care Ethics</td>
<td>2</td>
</tr>
<tr>
<td>IMAG462</td>
<td>Ultrasound Physics & Instrumentation II</td>
<td>2</td>
</tr>
<tr>
<td>IMAG475</td>
<td>Obstetrics and Gynecology Ultrasound I</td>
<td>3</td>
</tr>
<tr>
<td>IMAG480</td>
<td>Clinical Practicum I</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAG476</td>
<td>Obstetrics and Gynecology Ultrasound II</td>
<td>2</td>
</tr>
<tr>
<td>IMAG481</td>
<td>Clinical Practicum II</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Senior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL325</td>
<td>Professional and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>IMAG477</td>
<td>Interventional Ultrasound</td>
<td>1</td>
</tr>
<tr>
<td>IMAG478</td>
<td>Ultrasound of Superficial Structures</td>
<td>1</td>
</tr>
<tr>
<td>IMAG482</td>
<td>Clinical Practicum III</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS

48
Course Descriptions

IMAG300 Imaging Practicum I (1 Credit Hour)
IMAG303 Imaging Practicum II (4 Credit Hours)
IMAG306 Imaging Practicum III (9.5 Credit Hours)
IMAG400 Imaging Practicum IV (1.5 Credit Hour)
IMAG401 Imaging Practicum V (2 Credit Hours)
IMAG402 Imaging Practicum VI (4 Credit Hours)

Clinical experiences structured into a sequence of progressively increasing levels of applied technical and patient care knowledge and skills. Student experiences will involve performing routine, trauma, portable, and surgical radiographic and fluoroscopic examinations. These experiences will develop student learning from observation through mastery levels.

IMAG301 Positioning Principles I (2 Credit Hours):
Instruction of anatomy, radiographic positioning/procedures and equipment manipulation for radiographic examinations of the upper extremity, shoulder girdle, chest, abdomen, lower extremity, hip, pelvis, upper and lower gastrointestinal tract, gall bladder and biliary ducts, genitourinary system, lumbar spine. Through classroom participation and projection charting, students will identify anatomy and describe associated radiographic projections. They will establish interrelationships between the various projections and associated positions and will formulate radiographic principles for each radiographic exam.

IMAG302 Positioning Lab I (2 Credit Hours): Laboratory instruction of radiographic positioning, equipment manipulation, patient care and visual assessment of radiographs for radiographic examinations of the upper extremity, shoulder girdle, chest, abdomen, lower extremity, hip, pelvis, gall bladder and biliary tract, genitourinary tract, lumbarosacral spine. Students will assume a technologist's role and perform all aspects of radiographic examinations on classmates under the guidance of the instructor.

IMAG304 Positioning Principles II (2 Credit Hours):
Instruction of anatomy, radiographic positioning/procedures and equipment manipulation for radiographic examinations of the thoracic spine, cervical spine, sacrum, coccyx, bony thorax, cranium, facial bones, as well as myelography and arthrography procedures. Through classroom participation and projection charting, students will identify anatomy and describe associated radiographic projections. They will establish interrelationships between the various projections and associated positions and will formulate radiographic principles for each radiographic exam.

IMAG305 Positioning Lab II (2 Credit Hours): Laboratory instruction of radiographic positioning, equipment manipulation, utilization of image receptors, film processing and darkroom procedures, patient care, and visual assessment of radiographs for radiographic examinations of the thoracic spine, cervical spine, sacrum, coccyx, bony thorax, lymph system, cranium, facial bones, myelography, and arthrography. Students will assume a technologist's role and perform all aspects of radiographic examinations on classmates under the guidance of the instructor.

IMAG308 Positioning Principles III (1 Credit Hour):
Instruction of positioning, procedures and equipment manipulation for pediatric, geriatric, trauma and "specialized" orthopedic radiographic examinations. Heart catheterization, operating room, emergency room, angiographic and mobile radiography procedures will also be studied. Students will summarize and demonstrate procedures.

IMAG311 Fundamentals of Imaging and Physics (6 Credit Hours): This course will provide students with the knowledge of equipment routinely utilized to produce diagnostic images. Various recording media and techniques will be discussed. Specific topics to be introduced are: fluoroscopy, tomography, mammography, mobile radiography, and cardiovascular imaging. Emphasis on quality will be incorporated into each area of discussion to include its rational, use, and continued process improvement. Methods for proper evaluation of radiographs will be introduced and reinforced with practical application.

IMAG313 Evaluating Radiographs II (0.5 Credit Hours): This course will provide instruction on the evaluation of radiographic image quality with an emphasis on patient positioning, equipment orientation, and tube-part-IR alignment. Evaluation criteria will be presented for the following radiographic examinations: abdomen, chest, upper extremities, shoulder, and lower extremities.

IMAG314 Evaluating Radiographs III (0.5 Credit Hours): This course will provide instruction on the evaluation of radiographic image quality with an emphasis on patient positioning, equipment orientation, and tube-part-IR alignment. Evaluation criteria will be presented for the following radiographic/fluoroscopic examinations: hip, pelvis, upper GI and lower GI tracts, GU system, cranium, vertebral column and bony thorax.

IMAG315 Positioning Laboratory III (1 Credit Hour):
Laboratory instruction of radiographic positioning, equipment manipulation, utilization of image receptors, film processing and darkroom procedures, patient care, and visual assessment of radiographs for radiographic examinations of the skull/temporal bones, sinuses, facial bones to include orbits, mandible and TMJ's, pediatric, geriatric, trauma and "specialized" orthopedic radiographic examinations as well as arthrography, myelography and mammography. Students will assume a technologist's role and simulate all aspects of radiographic examinations on classmates under the guidance of the instructor.

IMAG324 Medical Imaging Biology and Protection (1 Credit): The course content presents basic concepts & principles in radiation biology, radiation protection & safety philosophy & practice in the radiologic science environment.
Radiation health & safety requirements of federal & state regulatory agencies, accreditation agencies & health care organizations are incorporated. Specific responsibilities of the radiologic science professional are discussed & examined. The interactions of radiation with cells, tissues & the body as a whole & resultant biophysical events will also be presented & applied to the clinical practice of medical imaging & radiation therapy.

IMAG327 Topographic/Sectional/Imaging Anatomy for Medical Sonographers (3 Credit Hours): Topographic, sectional and radiographic anatomy will be studied through the use of cadavers, pro-sections, and body slices as well as radiographic, ultrasound, CT, and MRI images. Sonograms presented will demonstrate various anatomic structures in multiple orthogonal planes. The course will consist of presentations and laboratory demonstrations/study.

IMAG329 Radiographic/Topographic/Sectional Anatomy (2 Credit Hours): Topographic, sectional and radiographic anatomy will be studied through the use of body slices/images, as well as diagnostic radiography, CT, MRI, and ultrasound images. The course will consist of presentations and laboratory demonstrations/study.

IMAG400 Imaging Practicum IV (1.5 Credit Hours): Clinical experiences structured into a sequence of progressively increasing levels of applied technical and patient care knowledge and skills. Student experiences will involve performing routine, trauma, portable, and surgical radiographic and fluoroscopic examinations. These experiences will develop student learning from observation through mastery levels.

IMAG401 Imaging Practicum V (2 Credit Hours): Clinical experiences structured into a sequence of progressively increasing levels of applied technical and patient care knowledge and skills. Student experiences will involve performing routine, trauma, portable, and surgical radiographic and fluoroscopic examinations. These experiences will develop student learning from observation through mastery levels.

IMAGE402 Imaging Practicum VI (4 Credit Hours): Clinical experiences structured into a sequence of progressively increasing levels of applied technical and patient care knowledge and skills. Student experiences will involve performing routine, trauma, portable, and surgical radiographic and fluoroscopic examinations. These experiences will develop student learning from observation through mastery levels.

IMAG410 Quality Management in Medical Imaging (2 Credit Hours): Protocols for a quality management program incorporating all operations, functions of the medical imaging profession including operational, administrative aspects of quality management in radiation therapy, radiography, CT, MRI, mammography, & sonography. The comprehensive nature of a quality management program is presented, discussed within the context of professional standards of care. Relationships of accreditation, certification, licensure & service delivery standards are presented. Specific quality management practices for the various degree-tracked individuals are provided.

IMAG411 Imaging Pathology (3 Credit Hours): This course examines pathologic conditions that are most commonly demonstrated by radiographic CT, MRI, and U/S imaging procedures. Upon completion of the course, students will be able to identify major pathologic conditions and will be able to recognize the more common pathologic conditions that will be encountered in clinical practice. The course consists of PowerPoint presentations of pathologies accompanied by discussion of the related pathophysiology.

IMAG412 Management Practices (2 Credit Hours): This course introduces the student to management practices in medical imaging. Four primary areas focus on personnel, planning managing and finance. The student will be introduced to administrative structure, personnel management and communication styles and customer relations activities. The course will also introduce the practice of technology assessment, identifying future trends, and financing new technology. Finally, the student will become familiar with the specifics of managing an imaging department: total quality management, licensure, accrediting organizations and risk management.

IMAG415 Imaging Clerkship I (8 Credit Hours): In this sequence of clinical experiences, students will expand their knowledge and application of imaging principles in a progression of increasingly complex examinations in routine, portable, fluoroscopy, trauma, surgical, orthopedic and free standing imaging settings. Students will apply and synthesize imaging principles to formulate creative approaches to image attainment for "difficult" patient conditions. Through rotations in free standing imaging centers, students will gain working knowledge of patient scheduling and record/film management.

IMAG416 Imaging Clerkship II (7 Credit Hours): In this sequence of clinical experiences, students will expand their knowledge and application of imaging principles in a progression of increasingly complex examinations in routine, portable, fluoroscopy, trauma, surgical, orthopedic and free standing imaging settings. Students will apply and synthesize imaging principles to formulate creative approaches to image attainment for "difficult" patient conditions. Through rotations in free standing imaging centers, students will gain working knowledge of patient scheduling and record/film management.

IMAG417 Advanced Imaging Procedures CT I (4 Credit Hours): This course will introduce the students to the basics of computer tomography image formation, equipment, and terminology. Concepts regarding parameters, scanning protocols and the clinical application of computed tomography will be addressed. Anatomy, positioning criteria, pathology, scanning criteria and any modifications from routine procedures related to the brain, abdomen, pelvis and thorax will be presented.

IMAG418 Advanced Imaging Procedures CT II (2 Credit Hours): This course will introduce the students to the advanced principals of computed tomography image formation, equipment and terminology. Concepts regarding
imaging parameters, equipment differentiation, advanced scanning methods and the clinical application of these methods will be addressed. Anatomy, positioning criteria, pathology, scanning criteria and any modifications from routine procedures related to the central nervous system, musculoskeletal system, neck and interventional procedures will be presented.

IMAG430 Advanced Imaging Practicum CT – I BPS (6 Credit Hours)
IMAG431 Advanced Imaging Practicum CT – I BS (5 Credit Hours)
IMAG432 Advanced Imaging Practicum CT – II BPS (7 Credit Hours)
IMAG434 Imaging Practicum CT – III BS (8 Credit Hours)
IMAG435 Advanced Imaging Practicum CT – II BS (5 Credit Hours)
IMAG436 Advanced Imaging Practicum CT – III BPS (10 Credit Hours): The sequence of clinical experiences, increasing in complexity, will allow the student the opportunity to practice skills necessary to obtain high quality CT images, to objectively alter protocols based on patient pathology or physical condition, and to identify image quality problems and make appropriate corrections. Clinical education is conducted at a clinical facility after or in conjunction with didactic instruction. This course presents a progression in clinical experiences from observation through performance and practice to the mastery level.

IMAG451 Advanced Imaging Procedures MR – 1 (5 Credit Hours): This course presents the basic concepts of magnetic resonance imaging including MRI safety, magnetic characteristics of hydrogen atoms within the body, the Larmor equation, effects of external magnetic fields and radio frequency pulses on hydrogen atoms' magnetic fields, pulse sequences, signal acquisition and related factors, variables affecting image formation, MR image tissue differentiation, slice localization using the Larmor equation, system hardware components, resonance and relaxation, image weighting and contrast parameters, spatial localization and data acquisition.

IMAG452 Advanced Imaging Practicum MR – II (5 Credit Hours): This sequence of clinical experiences, increasing in complexity, will allow the student the opportunity to practice skills necessary to obtain high quality MR images, to objectively alter protocols based on patient pathology or physical condition, and to identify image quality problems and make appropriate corrections. Clinical education is conducted at a clinical facility after or in conjunction with didactic instruction. This sequence presents a progression in clinical experiences from observation through performance and practice to the mastery level.

IMAG454 Advanced Imaging Procedures MR – II (2 Credit Hours): Topics presented will include pulse sequence parameters and image artifacts, advanced pulse sequences, and advanced applications in MR imaging.

IMAG455 Advanced Imaging Practicum MR – II BPS (7 Credit Hours): This sequence of clinical experiences, increasing in complexity, will allow the student the opportunity to practice skills necessary to obtain high quality MR images, to objectively alter protocols based on patient pathology or physical condition, and to identify image quality problems and make appropriate corrections. Clinical education is conducted at a clinical facility after or in conjunction with didactic instruction. This sequence presents a progression in clinical experiences from observation through performance and practice to the mastery level.

IMAG457 Imaging Practicum MR – III BS (8 Credit Hours): This course presents the principles of ultrasound instruments, modes of operation, operator control options, frequency selection, echogenic properties, scanning motions and planes, as the principles apply to patient scheduling and patient preparation. A one-hour laboratory session included to simulate review of various obstetrical, gynecological, abdominal and regional anatomy (paranatomy) sonographic images and their presentation.

IMAG461 Ultrasound Physics and Instrumentation I (2 Credit Hours): This course presents an expanded study of ultrasound principles and instrumentation concepts as they relate to interaction of sound and tissue, equipment instrumentation, bioeffects, quality assurance, transducer construction and artifact recognition for application in patient care.

IMAG462 Ultrasound Physics and Instrumentation II (2 Credit Hours): This course presents an expanded study of ultrasound principles and instrumentation concepts as they relate to interaction of sound and tissue, equipment instrumentation, bioeffects, quality assurance, transducer construction and artifact recognition for application in patient care.
IMAG465 Ultrasound Senior Project (1 Credit Hour): In this course, the student will develop a hypothesis, abstract, outline, literature assessment, and conclusion for an independent senior research project to be completed in consultation with a member of the faculty. The subject matter will pertain to the diagnostic medical sonography profession. The student, with guidance from a faculty member, will utilize readings, texts, journal articles, practicum experience, or content from seminars and lectures to identify and explore selected subject matter. Students will present hypotheses, major findings, and conclusions.

IMAG471 Contemporary Issues in Medical Imaging (2 Credit Hours): This course addresses issues in medical imaging and their impact upon the profession. A variety of health care topics will be discussed, disseminated and researched. Documentation of the various topics will include video presentations, case studies, journal entries, panel discussions on select topics, and literature review, presentations, and assessment.

IMAG472 Abdominal Ultrasound (5 Credit Hours): This course will serve as both an introduction to ultrasound and instruction regarding various aspects of abdominal sonography. We will discuss ultrasound evaluation of the major organ systems and blood vessels found in the abdominal cavity. We will also cover various miscellaneous ultrasound exams that will not be covered in subsequent courses (pediatric hips, neuro sonography, pyloric stenosis). We will include discussion and demonstration of anatomy, physiology, pathology, and patient care issues related to sonography. There will also be a significant lab portion to the course. This will consist of hands on scanning practice and demonstrations.

IMAG475 Obstetrics and Gynecology Ultrasound I (3 Credit Hours): Introduction to cross sectional anatomy of the female pelvis & obstetric anatomy. A study of embryology with correlated normal sonographic patterns of the female pelvis & obstetric anatomy. Patient interview & examination techniques, terminology, chart & referral evaluation, diagnostic testing protocols related to specific disease, conditions, physiology including blood flow dynamics, pertinent pathology & pathophysiology, patient care considerations & communication, examination ergonomics, legal/ethical issues specific to obstetric & gynecologic ultrasound procedures are discussed, modeled & role-played.

IMAG476 Obstetrics and Gynecology Ultrasound II (2 Credit Hours): This course will present the disease processes and physiological alterations that occur within the female reproductive system and fetus. Sonographic image evaluation of various pathophysiologic conditions associated with the female and fetus are reviewed. This course will include medical terminology, pertinent clinical signs, symptoms, and laboratory tests, pertinent legal principles, infection control and universal precaution considerations and communication, examination ergonomics, and legal/ethical issues specific to obstetric and gynecologic ultrasound procedures are discussed, modeled and role-played. Students will prepare and present an OB/GYN case.

IMAG477 Interventional Ultrasound (1 Credit Hour): This course will present various methods regarding interventional techniques for lesion localization, aspiration and biopsy. The management of aseptic and non-aseptic environments is discussed. Laboratory tests are examined and discussed regarding the relevance in patient management. This course will include medical terminology, pertinent clinical signs, symptoms, and laboratory tests, pertinent legal principles, infection control and universal precaution procedures and pertinent patient care procedures. Vascular imaging is introduced with various applications for associated anatomy.

IMAG478 Ultrasound of Superficial Structures (1 Credit Hour): This course will present gross and sectional anatomy of superficial (e.g. thyroid, breast, testes, joints, etc.) regions of anatomy. This course will include medical terminology, pertinent clinical signs, symptoms, and laboratory tests, pertinent legal principles, infection control and universal precaution procedures and pertinent patient care procedures. Sonographic findings for various pathological and physiological conditions associated with superficial structures will be correlated with other medical imaging presentations.

IMAG480 Clinical Practicum I (7 Credit Hours): The student will be introduced to ultrasound scanning protocols with the opportunity to perform actual laboratory scanning of the abdomen with eventual practical application in the clinical environment. The student will learn how to produce diagnostic sonograms and differentiate normal and abnormal images. Clinical performance is supervised and routinely evaluated. If clinical performance is unsatisfactory or compromises patient safety, immediate termination from the clinical portion of the program may result.

IMAG481 Clinical Practicum II (10 Credit Hours): Scanning of the abdomen, female reproductive tracts, fetus, and superficial anatomy will be accomplished. Introduction to vascular imaging associated with the aforementioned anatomy will occur. The continued production and interpretation of sonograms for each of these areas is expected. Students are expected to perform examinations in an independent and responsible manner consistent with level of experience and program objectives. Clinical performance is supervised and routinely evaluated. If clinical performance is unsatisfactory or compromises patient, immediate termination from the clinical portion of the program may result.

IMAG482 Clinical Practicum III (8 Credit Hours): Extensive scanning experiences in examinations involving abdominal, obstetric & gynecological procedures, superficial, interventional & vascular applications. Students are expected to perform examinations in an independent & responsible manner consistent with their level of experience & program objectives. Continued production & interpretation of sonograms for each of the aforementioned areas is expected. Clinical performance is supervised & routinely evaluated. Unsatisfactory clinical performance that compromises patient safety may result in dismissal from the clinical portion of the program.
IMAG483 Clinical Practicum IV (10 Credit Hours): Sequel to IMAG482: Intense scanning experience for the student in abdominal, obstetric and gynecological, superficial, interventional and vascular applications. Students will perform examinations in an independent and responsible manner consistent with their level of experience and program objectives. Continued production and interpretation of sonograms for each of the previously mentioned is required. Clinical performance is consistently supervised and routinely evaluated. Unsatisfactory clinical performance that compromises patient safety may result in dismissal from the clinical portion of the program.

IMAG324 Radiation Biology and Protection (1 Credit Hours): The course content presents basic concepts and principles in radiation biology, radiation protection and safety philosophy and practice in the radiologic science environment. Radiation health and safety requirements of federal and state regulatory agencies, accreditation agencies, and health care organizations are incorporated. Specific responsibilities of the radiologic science professional are discussed and examined. The interactions of radiation with cells, tissues, and the body as a whole and resultant biophysical events will also be presented and applied to the clinical practice of medical imaging and radiation therapy.

RDSC326 Radiologic Science Patient Care (2 Credit Hours): This course orients the student to the clinical practice of Radiologic Science. Topics covered will include patient care clinical skills, medical terminology, and communication.

Physician Assistant: Master of Science in Physician Assistant Studies

CIP Code: 51.0912
http://www.upstate.edu/chp/programs/pa/index.php

Physician assistants are highly qualified licensed health care professionals who practice medicine with physician supervision. Physician assistants participate in a demanding academic and clinical curriculum that prepares them for the complexities of their career. Physician assistants are trained to elicit medical histories, perform physical exams, order and interpret diagnostic studies, perform clinical procedures and formulate patient treatment and management plans. Physician assistants practice in all areas of medicine and surgery. Opportunities exist in primary care offices (pediatrics, family practice and internal medicine), medical sub-specialty offices such as cardiology, gastroenterology and endocrinology, as well as general surgery and surgical sub-specialty practices such as cardiothoracic surgery and orthopedics. Physician assistants work in various settings including inpatient, outpatient, nursing homes, urgent care centers and emergency rooms.

Summer Semester

DPAS605 Human Anatomy
9

DPAS601 Professional Issues I
1

DPAS603 Population Medicine
1

DPAS608 EKG Interpretation
1

TOTAL
12

<table>
<thead>
<tr>
<th>Summer Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPAS605 Human Anatomy</td>
<td>9</td>
</tr>
<tr>
<td>DPAS601 Professional Issues I</td>
<td>1</td>
</tr>
<tr>
<td>DPAS603 Population Medicine</td>
<td>1</td>
</tr>
<tr>
<td>DPAS608 EKG Interpretation</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
</tr>
</tbody>
</table>

Fall Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPAS611 General Medicine I</td>
<td>5</td>
</tr>
<tr>
<td>DPAS621 Human Physiology I</td>
<td>3</td>
</tr>
<tr>
<td>DPAS625 Clinical Pharm I</td>
<td>3</td>
</tr>
<tr>
<td>DPAS606 Physical Diagnosis</td>
<td>2</td>
</tr>
<tr>
<td>DPAS623 Diagnostic Studies for Health Care Providers</td>
<td>2</td>
</tr>
<tr>
<td>DPAS604 Interviewing & Documentation</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPAS612 General Medicine II</td>
<td>5</td>
</tr>
<tr>
<td>DPAS615 Behavioral Science</td>
<td>3</td>
</tr>
<tr>
<td>DPAS626 Clinical Pharmacology II</td>
<td>3</td>
</tr>
<tr>
<td>DPAS616 Research Design & EBM</td>
<td>2</td>
</tr>
<tr>
<td>DPAS622 Human Physiology II</td>
<td>3</td>
</tr>
<tr>
<td>DPAS607 Advanced Physical Diagnosis</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPAS650-653 4 Clinical Rotations</td>
<td>16</td>
</tr>
<tr>
<td>DPAS671 Masters Clinical Research II</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
</tr>
</tbody>
</table>

Course Descriptions

DPAS601 Professional Issues I (1 Credit Hour): This course, the first course in a two course sequence, introduces students to the many aspects of the physician assistant profession. Students are introduced to the history and evolution of the profession, the scope of practice of physician assistants, requirements to maintain professional certification and licensure, professional issues facing PA’s today, the role of physician assistants in the delivery of health care, and patient confidentiality.

DPAS602 Professional Issues II (1 Credit Hour): This course, a continuation of Professional Issues I, introduces students to issues dealing with patient consent, ethics, reimbursement issues, quality assurance, risk management, and legal issues of healthcare as they apply to physician assistants and the delivery of healthcare. Additionally, PA political and legal issues, patient referral and professional liability are introduced and discussed.
DPAS603 Population Medicine (1 Credit Hour): Preventive health counseling is an important role of the physician assistant. In this course, disease prevention and patient education is emphasized. Students also learn about specialized needs of various populations in within communities. Additionally, the relevance of epidemiology and public health within community health is also discussed.

DPAS604 Interviewing & Documentation (2 Credit Hours): This course introduces proper interviewing techniques and provides students with a background in obtaining a complete medical history as well as a problem-oriented history. The skill and importance of proper chart documentation is also emphasized.

DPAS605 Human Anatomy (9 Credit Hours): This course includes an in-depth review of the human body through lecture and cadaver dissections. Relationships between human development, structure and function are stressed. Applied clinical anatomy is also emphasized.

DPAS606 Physical Diagnosis (2 Credit Hours): This course, the first of a two-course sequence on physical exam, utilizes both lecture and lab. Using a head-to-toe approach, the lecture portion of this course reviews the proper procedure for performing a complete physical exam as well as the associated documentation for this clinical task. The laboratory component allows students the opportunity to develop, practice and perfect their technique.

DPAS607 Advanced Physical Diagnosis (2 Credit Hours): This course, a continuation of Physical Diagnosis, teaches students the art of a detailed problem focused history and physical exam, along with some specialty exams that are commonly performed by physician assistants in clinical practice. The lecture portion of this course provides detailed descriptions of specific exams, while the laboratory portion allows students the opportunity to practice and perfect techniques.

DPAS608 EKG Interpretation (1 Credit Hour): This course reviews the basic principles of electrocardiography, as well as the interpretation of the 12 lead EKG including rate, rhythm, blocks, axis, hypertrophy, injury, and infarction.

DPAS611 General Medicine I (5 Credit Hours): This is the first course of a three-course sequence. This course covers the etiology, pathophysiology, signs, symptoms, differential diagnosis, laboratory and imaging studies, and treatment for a wide variety of diseases, syndromes, and disorders. Systems and topics covered are sequenced Physiology I and Pharmacology I.

DPAS612 General Medicine II (5 Credit Hours): This course is a continuation of General Medicine I. Systems are sequenced with organ systems in Physiology II and drug classes in Pharmacology II.

DPAS613 General Medicine III (3 Credit Hours): This course is a continuation of General Medicine II with emphasis on medical problems in specialized settings and populations.

Specialized populations include OB/GYN and Geriatrics, and specialized settings include General Surgery and Emergency Room.

DPAS615 Behavioral Science (3 Credit Hours): This course emphasizes the use of behavioral sciences in understanding human functioning in health and disease. The course is organized into four units: overview, mood disorders, child and adolescent disorders, and somatoform disorders.

DPAS616 Research Design & Evidence Based Medicine (2 Credit Hours): This course introduces students to the basic language, logic, and designs used in clinical research. Principles of evidence-based practice, as related to the clinical practice of medicine, are also introduced. This course prepares students for their capstone Master’s Project.

DPAS621 Human Physiology I (3 Credit Hours): This is the first of a two-course sequence. This course reviews the normal functioning of human tissues and organs as well as the pathophysiology of various diseases and illnesses. Organ systems are sequenced with drug classes in Pharmacology I and topics in General Medicine I.

DPAS622 Human Physiology II (3 Credit Hours): This course is a continuation of Physiology I. Systems are sequenced with topics in General Medicine II and drug classes in Pharmacology II.

DPAS623 Diagnostic Studies for Healthcare Providers (2 Credit Hours): This course is designed to teach the clinician the important question of when to order appropriate laboratory and medical imaging studies along with how to interpret these results. This course also reviews cost effectiveness for the purpose of improved patient monitoring and enhanced diagnostic accuracy.

DPAS625 Clinical Pharmacology I (3 Credit Hours): This is the first course of sequence. This course covers general pharmacologic principles, drug receptor sites, physiologic reactions, half-life, therapeutic effects, metabolism, excretion and possible side effects of different classes of drugs on various organ systems. Practical clinical application is emphasized; drug classes are synchronized with organ systems in General Medicine I.

DPAS626 Clinical Pharmacology II (3 Credit Hours): This is the second course of sequence. This course covers general pharmacologic principles, drug receptor sites, physiologic reactions, half-life, therapeutic effects, metabolism, excretion and possible side effects of different classes of drugs on various organ systems. Practical clinical application is emphasized; drug classes are synchronized with organ systems in General Medicine II.

DPAS627 Clinical Pharmacology III (2 Credit Hours): This is the third course of sequence. This course covers general pharmacologic principles, drug receptor sites, physiologic reactions, half-life, therapeutic effects, metabolism, excretion and possible side effects of different classes of drugs on various organ systems. Practical clinical application is
emphasized; drug classes are synchronized with organ systems in General Medicine III.

DPAS631 Pediatrics (2 Credit Hours): This course introduces students to the fundamentals of pediatric medicine, covering the neonate through the adolescent, including preventive care and the diagnosis and treatment of common pediatric disorders and illnesses.

DPAS632 Clinical Procedures (2 Credit Hours): This course involves both lecture and lab. The lecture portion reviews indications, contraindications, technique, and complications involving various clinical procedures. The laboratory portion allows students the opportunity to practice and perfect these techniques. Basic life support, advanced cardiac life support, and pediatric advanced life support are included in this course.

DPAS633 Clinical Decision Making (1 Credit Hour): This case-based course teaches systematic approach to the assessment and therapeutic management of clinical problems. Included in the case discussions are the history and physical exam findings, appropriate use of diagnostic studies, development of differential diagnosis, formulation of treatment plans, and description of disease prognosis.

DPAS634 Infection Control (1 Credit Hour): This online course fulfills the New York State requirements regarding infection control for licensed health care providers. Topics covered include infection control practices and interventions for compliance and safety, chain of infection, personal protective equipment (PPE), reprocessing methods, and prevention of blood borne pathogens and communicable diseases.

DPAS650 Clinical Rotation I (4 Credit Hours)
DPAS651 Clinical Rotation II (4 Credit Hours)
DPAS652 Clinical Rotation III (4 Credit Hours)
DPAS653 Clinical Rotation IV (4 Credit Hours)
DPAS654 Clinical Rotation V (4 Credit Hours)
DPAS655 Clinical Rotation VI (4 Credit Hours)
DPAS656 Clinical Rotation VII (4 Credit Hours)
DPAS657 Clinical Rotation VIII (4 Credit Hours)
DPAS658 Clinical Rotation IX (4 Credit Hours)
DPAS659 Clinical Rotation X (4 Credit Hours)
DPAS660 Clinical Rotation XI (4 Credit Hours)

During these eleven four-week clinical rotations, students are assigned to a clinically affiliated health care provider. In these settings, students are able to integrate the knowledge and skills learned during the didactic year and practice in a supervised setting under the direction of a licensed health care provider. Students will complete all of the following rotations: Family Medicine, Internal Medicine, Pediatrics, Women’s Health, Behavioral Medicine, General Surgery, Emergency Medicine, Long Term Care and electives.

DPAS670 Master’s Clinical Research I (1 Credit Hour): This is the first of a three-sequence course in which students begin to devise their final capstone Master's Project. Students work with the course instructor to define and refine a clinical question on a topic of their choice and begin the first draft of their literature review.

DPAS671 Master's Clinical Research II (1 Credit Hour): This is the second of a three-sequence course in which students finalize and submit the written report for their final capstone Project.

DPAS672 Master's Clinical Research III (1 Credit Hour): This is the final of a three-course series in which students create a poster on their selected research topic and present their poster to faculty and peers. During this supervised independent study course, students work with their project advisor to assure reasonable progress is occurring in development of their poster.

Physical Therapy: Doctor of Physical Therapy (DPT) and Post-Professional Doctor of Physical Therapy (T-DPT)

CIP Code: 51.2308

Physical therapists (PTs) work directly with people to enhance movement and promote optimal health and function. PTs manage pain through movement, hands-on care, and patient education. In addition, PTs collaborate with their patients/clients to prevent mobility loss and to develop fitness and wellness programs focused on healthy and active lifestyles.

Physical therapists work with all systems of the body and diagnose and treat patients of all ages. They are employed in clinical settings that include hospitals, rehabilitation centers, private practices, universities, extended care facilities, home settings, and sports medicine centers.

Program of Study for Doctor of Physical Therapy Program Code-Professional DPT: 27835

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>PHYT601 Gross Anatomy</td>
<td>6</td>
</tr>
<tr>
<td>PHYT602 Professional Behaviors</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>PHYT611 Bioscience I</td>
<td>5</td>
</tr>
<tr>
<td>PHYT615 Introduction to Manual Therapy and Exercise</td>
<td>3</td>
</tr>
<tr>
<td>PHYT621 Foundations of Patient/Client Management</td>
<td>3</td>
</tr>
<tr>
<td>PHYT625 Kinesiology and Examination of the Upper Quarter</td>
<td>4</td>
</tr>
<tr>
<td>PHYT642 Foundations of Evidence Based Practice</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>PHYT604 Differential Diagnosis in Physical Therapy</td>
<td>3</td>
</tr>
<tr>
<td>PHYT605 Neuroscience</td>
<td>6</td>
</tr>
<tr>
<td>PHYT612 Bioscience II</td>
<td>2</td>
</tr>
<tr>
<td>PHYT616 Physical Agents: Assessment and Intervention</td>
<td>2</td>
</tr>
<tr>
<td>PHYT626 Kinesiology and Examination of the Lower Quarter</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>PHYT631 Patient/Client Management: Adult Neurological Disorders</td>
<td>3</td>
</tr>
<tr>
<td>PHYT632 Patient/Client Management: The Spine</td>
<td>2</td>
</tr>
</tbody>
</table>
to health and wellness, professionalism, and interpersonal and time and resource management, stress management in relation practice, ethical and legal considerations, communication, environment are reviewed. Issues relating to standards of professional realm of physical therapy and in the healthcare foundational elements necessary for practicing in the development of professional behaviors. The principles and core values, generic abilities and course is framed around the core values, generic abilities and principles and portfolio development are integral to the course.

PHYT604 Differential Diagnosis in Physical Therapy (3 Credit Hours): This course presents theories and concepts of clinical decision making and diagnosis in the context of determining if a patient presents with issues that are within the physical therapist's scope of practice. All aspects of patient management are addressed with regard to a variety of systemic disorders, with emphasis on those that are most pertinent to physical therapy practice. Through lecture, discussion, and case-based exercises, students gain an understanding of the impact of common systemic disorders on patient management. Clinical experiences are integrated into this course.

PHYT605 Neuroscience (6 Credit Hours): This course presents an integrated approach to the general organization and function of the human nervous system and includes an in-depth presentation of human neurophysiology and neuroanatomy. Emphasis is placed on the sensory and motor systems. Pathophysiologic aspects of neurologic conditions across the life span including differential signs and symptoms, typical clinical course, medical prognosis and management, motor control and motor learning principles are integrated with basic neuroscience knowledge.

PHYT611 Bioscience I (5 Credit Hours): Using a systems approach, this course emphasizes the integration of histology, physiology, pathology, and pharmacology as these disciplines apply to the human body across the life span. The relationship between structure and function of healthy body systems is investigated. The impact of common pathologies, and the pharmacological interventions used to treat those pathologies, on physical therapy practice are subsequently analyzed. Units of study include normal and abnormal structure and function of cells and tissue types, neural, endocrine, immune, muscle, circulatory, lymphatic and respiratory systems.

PHYT612 Bioscience II (2 Credit Hours): This course is a continuation of Bioscience I. Using a systems approach, this course emphasizes the integration of histology, physiology, pathology, and pharmacology as these disciplines apply to the human body across the life span. Units of study include the study of normal and abnormal structure and function of skeletal, integumentary, gastrointestinal, and genitourinary systems.

PHYT615 Introduction to Manual Therapy and Exercise (3 Credit Hours): This course introduces the principles of selected interventions, including soft tissue mobilization and manipulation, therapeutic massage, wellness and prevention, physical fitness, and therapeutic exercise.

PHYT616 Physical Agents: Assessment and Intervention (2 Credit Hours): This course reviews the biophysical principles, physiological implications, indications and contraindications underlying various physical agents, electrotherapeutic procedures and devices, and electrophysiological assessments of neuromuscular integrity. Intervention rationale includes the use of evidence-based practice. Students will practice the operation of physical
agents in a safe manner to assess and treat various musculoskeletal, neuromuscular, and integumentary disorders.

PHYT618 Therapeutic Exercise/Activities (3 Credit Hours): This course develops clinical skills focused on advanced therapeutic exercise techniques, including aquatic therapy and therapeutic exercise and clinical management for selected patient populations.

PHYT621 Foundations of Patient/Client Management (3 Credit Hours): This course introduces the students to foundational practice models, concepts and mobility skills that serve as a basis for patient management. Professional documentation and use of outcome measures to promote clinical decision making will be introduced and practiced. Patient education and communication skills will be emphasized. Students will participate in an integrated clinical experience in an acute care or rehabilitation center to promote understanding and skill development.

PHYT625 Kinesiology and Examination of the Upper Quarter (4 Credit Hours): This course introduces and integrates basic kinesiological/biomechanical principles related to the normal function/movement of the cervicothoracic spine and upper quarter with the basic principles of patient/client management of common conditions of the cervical region and upper extremity.

PHYT626 Kinesiology and Examination of the Lower Quarter (4 Credit Hours): This course integrates kinesiological/biomechanical principles related to the normal function/movement of the lumbo pelvic and lower quarter, including posture and gait, with the basic principles of patient/client management of spinal and lower extremity conditions across the life span.

PHYT631 Patient/Client Management: Adult Neurological Disorders (3 Credit Hours): This course focuses on skill development for examination, evaluation and interventions with individuals with neurologic impairments. Content focuses on evidence-based practice for the adult patient with central nervous system dysfunction, such as head trauma, cerebral vascular accident and other common neurologic disorders. A case-based problem-solving approach is emphasized integrating student’s previous knowledge regarding normal functioning of the nervous system.

PHYT632 Patient/Client Management: The Spine (2 Credit Hours): This introductory course focuses on the management of patient/clients with spinal disorders with an emphasis on the biopsychosocial approach. The course consists of the clinical decision making and clinical skill development required for managing patients with spinal disorders. Selected interventions taught include manual therapy, patient education, and therapeutic exercise.

PHYT634 Patient/Client Management: Developmental Disabilities (3 Credit Hours): This course examines the developmental concerns and issues encountered in pediatric clinical practice, in examination, evaluation, physical therapy intervention and coordination, communication and documentation for the pediatric patient are included. This course includes discussions of normal development, various pediatric diagnoses, family centered care, legislative issues guiding pediatric physical therapy practice and coordination of physical therapy service with the pediatric team.

PHYT635 Patient/Client Management: Cardiovascular & Pulmonary Disorders (3 Credit Hours): This course focuses on the management of patient/clients with cardiopulmonary disorders with an emphasis on the normal structure and function of the cardiopulmonary system and the pathophysiology of the disorders of the respiratory system, heart, and circulatory system. Physical therapy examination and treatment of the patient/client with cardiopulmonary dysfunction is the focus for clinical skill development.

PHYT636 Patient/Client Management: Acquired Conditions (3 Credit Hours): This course integrates three units: 1) examination, evaluation, interventions, and clinical decision making for individuals needing orthotics; 2) examination, evaluation, interventions and clinical decision making for individuals with spinal cord injury and; 3) examinations, evaluation, intervention and clinical decision making for individuals needing prosthetics.

PHYT637 Ethics and the Social Determinants of Health (1 Credit Hour): This course acquaints students with the interrelationship of ethical principles and social determinants of health as they pertain to physical therapy and introduces a model for ethical decision-making that integrates moral, legal and ethical principles in clinical practice. Cases that illustrate ethical issues and social determinants of health are discussed in ways that broaden perspectives on healthcare and develop an appreciation for moral, legal, cultural, political and economic factors that influence patients and systems within the health care community.

PHYT638 Ethics in Action Through Service (1 Credit Hour): This service-learning course provides students with the opportunity to work in community organizations that address health inequities. A minimum of 30 hours of service at select community sites will be coordinated through the Center for Civic Engagement. Monthly didactic learning sessions will be offered in coordination with PRVM423 Service Learning and Community Health, promoting interprofessional dialogue around shared service experiences.

PHYT641 Teaching and Learning in Physical Therapy (2 Credit Hours): This course emphasizes the knowledge, skills and behaviors needed by the physical therapist to educate patients/clients, caregivers, families, professional colleagues, students and community members. Content includes application of teaching and learning theories, lesson plan development, didactic and clinical teaching techniques, methods of instruction and evaluation, and an introduction to the use of technology in education. A requirement of this course is to participate in a videotaped microteach session.

PHYT642 Foundations of Evidence Based Practice (2 Credit Hours): This course acquaints the student with the basic language, logic and methods of quantitative, qualitative and epidemiologic research as they apply to the health sciences. Principles of research are introduced through lecture,
readings, in class discussions, and assignments. Students are also introduced to the statistical methods most commonly employed in health research. Students will be trained to search scientific evidence through online databases and library research and learn to use citation management software for references. Critical appraisal of scientific articles regarding study design, statistical methods, result interpretation, and clinical implication is introduced through lecture and in-class activities.

PHYT643 Critical Inquiry (1 Credit Hour): The purpose of this seminar is to apply the broad concepts of research methods, as presented in the Research Methods course, and the concepts learned in Foundations of Evidence-based Practice to specific clinical problems. The student will read, critically analyze, and summarize evidence found in physical therapy and related literature to complete a written review of literature and poster. The students will give oral presentations of the literature review.

PHYT644 Physiology of Exercise (2 Credit Hours): Acute and chronic physiological responses to aerobic exercise are examined. Principles of submaximal and maximal aerobic cardiorespiratory fitness are emphasized. Guidelines for developing a comprehensive exercise prescription, wellness and health promotion, and community exercise across the lifespan are discussed. Introduction to nutrition and exercise prescription for special populations is introduced through case study.

PHYT646 Patient/Client Management: Orthopedics (3 Credit Hours): This course encompasses medical and physical therapy intervention for a variety of orthopedic disorders utilizing cases and current evidence to build upon previous orthopedic courses. Additional special topics are also introduced.

PHYT647 Psychosocial Aspects of Patient Care (2 Credit Hours): This course provides an opportunity to analyze and synthesize the psychological and sociological aspects of patient/client care. The emphasis is on self-directed learning and self-knowledge.

PHYT648 Imaging (2 Credit Hours): This course provides an opportunity to review normal radiologic images as well as discuss findings for common patient/client conditions, injuries, or diagnoses. Indications for commonly used diagnostic imaging modalities are included. The applications of imaging in both clinical practice and biomedical research are discussed.

PHYT650 Integumentary Management (1 Credit Hour): This course introduces the students to foundational concepts, examinations, tests, measures and interventions that serve as a framework for patient/client management of persons with integumentary concerns. The course will focus on wounds that are the result of venous insufficiency, arterial insufficiency, pressure, neuropathy, surgery, lymphedema and burns. Case studies, lab experiences, and patient observations are utilized to develop skills in these areas.

PHYT651 Applied Clinical Decision Making (2 Credit Hours): In this capstone course, students integrate the process of examination, evaluation, physical therapy diagnosis, prognosis, and interventions of selected conditions seen in physical therapy. A case-based, structured learning format employing the principles of evidence-based practice is used.

PHYT652 Management Principles (2 Credit Hours): This course allows the student to explore multiple aspects of the administrative process as it relates to the practice of physical therapy. An administrative project is an integral part of the course.

PHYT654 Geriatrics for Physical Therapists (3 Credit Hours): This course provides an in-depth examination of aging as it relates to physical therapy. Concepts and principles of aging are examined in light of evidence-based practice, including the biological, psychological, social and cultural aspects of aging. Care is given to differentiate between normal biological age changes and those due to other factors such as physical inactivity, emotional responses, and disease processes.

PHYT661 Clinical Experience I (8 Credit Hours): This is the first of four full-time clinical education experiences that integrates academic course work with patient/client care. Experiences may take place at an in- or out-patient setting in a wide geographic distribution. Under the supervision of clinical faculty, students begin to develop knowledge, skills, and behavior in professional practice, patient management and practice management as defined in the Clinical Performance Instrument (CPI).

PHYT662 Clinical Experience II (8 Credit Hours): This is the second of four full time clinical education experiences that integrate academic course work with patient/client care. Experiences may take place at an in- or out-patient setting in a wide geographic distribution. Under the supervision of clinical faculty, students begin to develop knowledge, skills, and behaviors in professional practice, patient management and practice management. Course objectives reflect heightened expectations consistent with an intermediate clinical experience.

PHYT663 Clinical Experience III (10 Credit Hours): This is the third of four full time clinical education experiences that integrates academic course work with patient/client care. Experiences may take place at an in- or out-patient setting in a wide geographic distribution. Under the supervision of clinical faculty, students continue to develop knowledge, skills, and behaviors in professional practice, patient management, and practice management with movement towards, or achievement of, entry-level performance as defined by the Clinical Performance Instrument (CPI).

PHYT664 Clinical Experience IV (10 Credit Hours): This is the fourth and final full-time clinical education experience that integrates academic coursework with patient/client care. Experiences may take place at an in- or out-patient setting in a wide geographic distribution. At the conclusion of this experience, students consistently demonstrate entry-level performance in professional practice, patient management and
practice management as defined by the Clinical Performance Instrument (CPI).

DPT Electives:
Enrollment is limited and subject to instructor and faculty advisor approval.

PHYT622 Current Issues in Pediatric PT (1 Credit Hour).
This elective encompasses all phases of pediatric intervention: from conception of an appropriate plan of care given the clientele, to implementation, to assessment of program effectiveness, to documentation of program results. Combination of supervised treatment sessions and selected advanced pediatric topics.

PHYT623 Current Issues in Orthopedic PT (1 Credit Hour).
This elective focuses on concepts and practice for critical thinking and manual therapy. It is an interactive format including active discussion and engaging debate.

PHYT624 Current Issues in Aging (1-3 credit hours).
This elective looks at current issues in aging utilizing a variety of formats.

PHYT658 Clinical Fellowship (1-2 Credit Hours).
Students will work with participants in the Vitality Fitness Program at the IHP which is a community exercise program for older adults and those with chronic diseases. Students will develop an individualized exercise program based on goals, past medical history and functional testing. Opportunity to work in the traditional land exercise or aquatic exercise program.

PHYT659 Teaching Practicum (1-2 Credit Hours).
Teaching / Lab Assistant This course is an assignment as a course teach assistant. Individual courses and number of students vary.

PHYT675 Research Fellowship (1 or 2 Credit Hours).
Students participate in various aspects of ongoing faculty projects including conceptualization, review of literature, IRB preparation, data collection, entry, and analysis and/or writing.

PHYT680 001 Current Topics in PT: Pelvic Floor (1 Credit Hour).
The course includes pelvic floor anatomy and introduces history, evaluation and treatment techniques for urinary incontinence, pelvic pain, and lumbopelvic and hip conditions. This elective is designed to integrate evidence based pelvic floor rehabilitation with students’ current knowledge of orthopedic practice. Limited to 3rd year DPT students.

PHYT680 002 Current Topics in PT: Sports (2 Credit Hours).
The course will focus on developing the student’s knowledge base pertaining to evaluation and physical therapy management of the athlete. It will focus on criterion based return to play and evidence informed practice. Limited to 3rd year DPT students.

PHYT680 003 Current Topics in PT: Global Service Learning (1 Credit Hour).
This elective looks at current issues in healthcare from a global perspective. Areas include pediatrics, geriatrics, rural health, and special healthcare topics. Preparation occurs prior to the trip and includes history and safety. There is a student cost for travel, room and board in country.

PHYT699 Independent Study (1-2 Credit Hours). Designed collaboratively with faculty member.

Radiation Therapy: Bachelor of Science and Bachelor of Professional Studies Degree Programs
CIP Code: 51.0907
http://www.upstate.edu/chp/programs/rt/index.php

A radiation therapist works as a member of a team of oncology professionals who use carefully targeted doses of powerful radiation beams to destroy tumors without permanently damaging the surrounding normal tissues.

Graduates of both programs are eligible to apply to take the American Registry of Radiologic Technologists qualifying examination.

Program of Study for Bachelor of Science Program
This program takes two years (five semesters).
Prerequisite: 53 semester hours in selected subjects.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451 Research Methods I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PATH360 Pathology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RADT300 Introduction to Radiation Therapy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RADT317 Essentials of Oncology I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RDSC323 Radiologic Physics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RDSC326 Radiologic Science Patient Care</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RADT341 Rad. Onc. Imaging</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL302 Foundations of Professional Communications I</td>
<td>0.5</td>
</tr>
<tr>
<td>RADT318 Essentials of Oncology II</td>
<td>2</td>
</tr>
<tr>
<td>RADT320 Introduction to Clinical Education</td>
<td>3</td>
</tr>
<tr>
<td>RADT327 Applied Rad. Onc. Anatomy</td>
<td>1</td>
</tr>
<tr>
<td>RADT342 Adv. Rad. Onc. Imaging</td>
<td>2</td>
</tr>
<tr>
<td>RADT361 Medical Dosimetry I</td>
<td>3</td>
</tr>
<tr>
<td>RADT362 Radiation Biology & Protection</td>
<td>1</td>
</tr>
<tr>
<td>CBHX315 Health Care Ethics</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADT321 Treatment Application I</td>
<td>4</td>
</tr>
<tr>
<td>RADT331 Clinical Simulation I</td>
<td>4</td>
</tr>
<tr>
<td>RADT422 Treatment Application II</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL303 Foundations of Professional Communications II</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>RADT423 Treatment Application III</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RADT432 Clinical Simulation II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
RADT435 Applied Dosimetry 3
RADT451 Radiation Therapy Seminar I 2
RADT455 Radiation Oncology Management 0.5
RADT462 Medical Dosimetry II 3
TOTAL 17

Spring Semester
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADT365 Radiation Therapy Physics</td>
<td>2</td>
</tr>
<tr>
<td>RADT441 Clinical Internship I</td>
<td>5</td>
</tr>
<tr>
<td>RADT442 Clinical Internship II</td>
<td>5</td>
</tr>
<tr>
<td>RADT452 Radiation Therapy Seminar II</td>
<td>2</td>
</tr>
<tr>
<td>RADT470 Senior Project</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Program of Study for Bachelor of Professional Studies

This program takes two years (five semesters). Prerequisite: registered or registry-eligible medical radiographers, with at least 53 credits.

Junior Year

Fall Semester
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL451 Research Methods I</td>
<td>1</td>
</tr>
<tr>
<td>ENGL325 Professional and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>PATH360 Pathology</td>
<td>3</td>
</tr>
<tr>
<td>RADT300 Introduction to Radiation Therapy</td>
<td>2</td>
</tr>
<tr>
<td>RADT317 Essentials of Oncology I</td>
<td>4</td>
</tr>
<tr>
<td>RDSC323 Radiologic Physics</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL302 Foundations of Professional Communications I</td>
<td>0.5</td>
</tr>
<tr>
<td>RADT318 Essentials of Oncology II</td>
<td>2</td>
</tr>
<tr>
<td>RADT320 Introduction to Clinical Education</td>
<td>3</td>
</tr>
<tr>
<td>RADT327 Applied Rad. Onc. Anatomy</td>
<td>1</td>
</tr>
<tr>
<td>RADT342 Adv. Rad. Onc. Imaging</td>
<td>2</td>
</tr>
<tr>
<td>RADT361 Medical Dosimetry I</td>
<td>3</td>
</tr>
<tr>
<td>CBHX315 Health Care Ethics</td>
<td>2</td>
</tr>
<tr>
<td>RADT324 Radiation Biology & Protection</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Summer Semester
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADT321 Treatment Application I</td>
<td>4</td>
</tr>
<tr>
<td>RADT331 Clinical Simulation I</td>
<td>4</td>
</tr>
<tr>
<td>RADT422 Treatment Application II</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
</tr>
</tbody>
</table>

Senior Year

Fall Semester
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL303 Foundations of Professional Communications II</td>
<td>0.5</td>
</tr>
<tr>
<td>RADT423 Treatment Application III</td>
<td>4</td>
</tr>
<tr>
<td>RADT432 Clinical Simulation II</td>
<td>4</td>
</tr>
<tr>
<td>RADT435 Applied Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>RADT451 Radiation Therapy Seminar I</td>
<td>2</td>
</tr>
<tr>
<td>RADT455 Radiation Oncology Management</td>
<td>0.5</td>
</tr>
<tr>
<td>RADT462 Medical Dosimetry II</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring Semester
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADT365 Radiation Therapy Physics</td>
<td>2</td>
</tr>
<tr>
<td>RADT441 Clinical Internship I</td>
<td>5</td>
</tr>
</tbody>
</table>

Course Descriptions

RADT300 Introduction to Radiation Therapy (2 Credit Hours): Content is designed to provide an introduction to the use of radiation therapy equipment, procedure and technique, patient positioning and immobilization for appropriate tumor localization and treatment delivery. The roles and responsibilities of the radiation therapist, the treatment prescription, the documentation of treatment parameters and delivery, emergency procedures and patient information needs will be presented. The use of electronic media will also be introduced. This course is taught through experience in the laboratory and clinical environment.

RADT317 Essentials of Oncology I (4 Credit Hours): The focus of this course will initially be on primary, secondary and tertiary disease prevention in general with particular reference to cancer prevention, detection, diagnosis, classification and treatment. The radiation therapist's responsibility in the management of neoplastic diseases of the skin, respiratory tract, and gastrointestinal tract will be covered including the epidemiology, etiology, detection, diagnosis, treatment and prognosis of tumors occurring at these sites. The course will consist of lecture and discussion.

RADT318 Essentials of Oncology II (2 Credit Hours): This course builds on material presented in RADT 317, continuing to focus on the radiation therapist's responsibility in the management of neoplastic diseases of the skin, respiratory tract, and gastrointestinal tract. The focus will initially be on primary, secondary and tertiary disease prevention in general with particular reference to cancer prevention, detection, diagnosis, classification and treatment. The radiation therapist's responsibility in the management of neoplastic diseases of the skin, respiratory tract, and gastrointestinal tract will be covered including the epidemiology, etiology, detection, diagnosis, treatment and prognosis of tumors occurring at these sites. The course will consist of lecture and discussion.

RADT320 Introduction to Clinical Education (3 Credit Hours): This course introduces the student to the clinical environment where clinical practice experiences are designed to provide care to the patient in the therapeutic setting for simulation, treatment planning and administration of a prescribed course of treatment. This will be performed initially in a laboratory setting, and then in clinical education settings, possibly outside of Syracuse, under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT321 Treatment Application I (4 Credit Hours): Sequential clinical practice experiences, increasing in complexity, during which the student provides patient treatments using various teletherapy units. This will be performed in various clinical education settings under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.
RADT327 Applied Radiation Oncology Anatomy (1 Credit Hour): Topographic, sectional, and radiographic anatomy as it applies to the practice of radiation therapy will be studied through the use of cadaver materials and various diagnostic and therapeutic images. The course will consist of lecture, demonstration, and laboratory experiences.

RADT331 Clinical Simulation I (4 Credit Hours): Sequential clinical practice experiences, increasing in complexity, shall be designed to provide care to the patient in the therapeutic setting for simulation, treatment planning and preparation for administration of a prescribed course of treatment. This will be performed in various clinical education settings under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT341 Radiation Oncology Imaging (1 Credit Hour): Content is designed to establish a knowledge base in factors that govern and influence the production and recording of radiographic images for patient simulation, treatment planning and treatment verification in radiation oncology. Radiation oncology imaging equipment and related devices will be emphasized. Laboratory sessions will facilitate student understanding and application of theory.

RADT342 Advanced Radiation Oncology Imaging (2 Credit Hours): Content is designed to establish a knowledge base in factors that govern and influence the production and recording of computed tomographic (CT) magnetic resonance (MR), positron emission tomography (PET) and ultrasound imaging for patient simulation, treatment planning and treatment verification in radiation oncology.

RADT361 Medical Dosimetry I (3 Credit Hours): Content, through lecture, illustrated talk, and laboratory, is designed to provide a detailed theoretical and practical knowledge base for assessing, comparing, contrasting and recommending the type of radiation therapy equipment, procedure and technique, and considerations for tumor localization and treatment delivery. The treatment prescription, documentation of treatment parameters and delivery will also be presented and discussed. Furthermore, patient contouring, basic external beam, central axis treatment and brachytherapy calculations will be performed.

RADT365 Radiation Therapy Physics (2 Credit Hours): Content is designed, through lecture, discussion and illustrated talk, to provide a detailed analysis of the structure of matter, properties of radiation, nuclear transformations, x-ray production and interactions of ionizing radiation as it applies to treatment units used in external beam radiation therapy, measurement of ionizing radiation absorbed dose, measurement, and dose distribution.

RADT422 Treatment Application II (4 Credit Hours): Sequential clinical practice experiences, increasing in complexity, during which the student provides patient treatments using various teletherapy units. This will be performed in various clinical education settings under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT423 Treatment Application III (4 Credit Hours): Sequential clinical practice experiences, increasing in complexity, during which the student provides patient treatments using various teletherapy units. This will be performed in various clinical education settings under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT432 Clinical Simulation II (4 Credit Hours): Sequential clinical practice experiences, increasing in complexity, shall be designed to provide care to the patient in the therapeutic setting for simulation, treatment planning and preparation for administration of a prescribed course of treatment. This will be performed in various clinical education settings under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT435 Applied Dosimetry I (3 Credit Hours): This clinical practice experience is designed to provide care to the patient in the therapeutic setting for simulation, treatment planning and administration of a prescribed course of treatment during which the student applies, integrates, synthesizes and evaluates the concepts and theories in radiation therapy patient treatment planning. This will be performed in various clinical education settings under the direct supervision of the clinical faculty. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT441 Clinical Internship I (5 Credit Hours): During first final spring clinical experience, the student, under the direct supervision of the clinical faculty, will perform all the functions of an entry level radiation therapist in all the clinical areas. These experiences permit the student to refine and develop clinical skills that reflect competencies for entry into practice. All experiences will be performed in clinical education settings, possibly outside of Syracuse. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT442 Clinical Internship II (5 Credit Hours): During this final clinical experience, the student, under the direct supervision of the clinical faculty, will perform all the functions of an entry level radiation therapist in all the clinical areas. These experiences permit the student to refine and develop clinical skills that reflect competencies for entry into practice. All experiences will be performed in clinical education settings outside of Syracuse. Progress is assessed through the evaluation of achievement of clinical competency and is graded via a pass/fail system.

RADT451 Radiation Therapy Seminar I (2 Credit Hours): The major focus of the senior seminar courses is on the practice of radiation therapy from a case-based point of view. Building on the basic knowledge of oncology and physics acquired in the junior year, the management of oncologic cases is explored in depth along with social, and psychological
factors that impact on the treatment plan and delivery. Review of the current professional literature is also expected.

RADT452 Radiation Therapy Seminar II (2 Credit Hours): The major focus of the senior seminar courses is on the practice of radiation therapy from a case-based point of view. Building on the basic knowledge of oncology and physics acquired in the junior year, the management of oncologic cases is explored in depth along with social, and psychological factors that impact on the treatment plan and delivery. Review of the current professional literature is also expected.

RADT455 Radiation Oncology Management (0.5 Credit Hour): This course provides opportunities for the student to gain a practical understanding of organizational behavior issues, reimbursement methodologies & payment systems, and marketing. Current issues will be examined from a management perspective. Additionally, the student will enhance the skills necessary to look for, and retain employment.

RADT462 Medical Dosimetry II (3 Credit Hours): Content is designed, through lecture and laboratory, to establish factors that influence and govern clinical planning of patient treatment. Special procedures and emerging technologies are also presented. Quality management which incorporates all operations and functions of a radiation therapy facility/service is presented.

RADT470 Senior Project (0.5 Credit Hour): This individual instruction course provides the senior level student with an opportunity to explore a radiation therapy subject area of interest selected in consultation with a member of the faculty. It is graded via a pass/fail system.

RADT324 Radiation Biology & Protection (1 Credit Hour): The course content presents basic concepts & principles in radiation biology, radiation protection and safety philosophy and practice in a modern radiation oncology department. The interactions of radiation with cells, tissues and the body, and resulting biophysical events will be presented and applied to the clinical practice of radiation therapy. Radiation health and safety requirements of federal & state regulatory agencies, accreditation agencies and health care organizations are incorporated.

RDSC323 Radiologic Physics (2 Credit Hours): Through discussion and illustrated talk, an introduction to radiation physics with emphasis on the physics and principles utilized in medical imaging. Topics include: basic physics, atomic and nuclear structure, radioactive decay, production of x-rays, interaction of radiation with matter, radiographic technique, and imaging modalities.

RDSC326 Radiologic Science Patient Care (2 Credit Hours): This course orients the student to the clinical practice of Radiologic Science. Topics covered will include patient care clinical skills, medical terminology, and communication. The course will consist of lecture, demonstration, and laboratory experiences.

Respiratory Therapy: Bachelor of Science Degree

CIP Code: 51.0908

http://www.upstate.edu/chp/programs/csrc/index.php

Respiratory Therapy is a health profession which involves evaluation, treatment, monitoring, and education of patients with a wide variety of cardiopulmonary disorders. Their patients may be found in many settings, including newborn, pediatric and adult/intensive care units; emergency departments; general medical units; extended care facilities; the home; disease management programs, research facilities, physician offices; rehabilitation programs; sleep and pulmonary laboratories; ground and air transport; educational facilities; and the medical industry.

Respiratory Therapists are experts in providing specialized therapeutic procedures for patients with life-threatening conditions, using life support devices such as mechanical ventilation, medical gases, medications, and lung clearance therapies. Respiratory therapists also provide rehabilitation, monitoring, education and support for patients with chronic respiratory conditions. Therapists combine state-of-the-art technology (“high tech”) with close patient contact (“high touch”) and complete competency-based courses such as the Neonatal Resuscitation Program (NRP), Pediatric Advanced Life Support (PALS) and Advanced Cardiovascular Life Support (ACLS). They are skilled in many areas including cardiopulmonary physiology, acute and chronic disease management, aerosolized medication selection and administration, use of many medical gases including oxygen, management of the airway both acutely and chronically, both short term and long term mechanical ventilation, assisting patients with lung expansion and clearance, and many types of tests and monitors to evaluate the cardiopulmonary system.

Respiratory therapists are involved in the management of cardiopulmonary disorders such as respiratory failure, heart failure, asthma, cystic fibrosis, pulmonary edema, emphysema and chronic bronchitis (COPD), drowning, hemorrhage, and shock. Therapists are also educated and competent in patient and peer teaching, community education, health promotion and disease prevention, various forms of research and leadership/management roles in various organizations.

Program of Study: Bachelor of Science in Respiratory Care

The Program of Study for the Bachelor of Science Program is a full-time entry-level program in Respiratory Therapy. Graduates of this program receive a Bachelor of Science Degree in Respiratory Care and are eligible to sit for national credentialing examinations and to apply for licensure as respiratory therapists throughout the United States.
Junior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESP307</td>
<td>Disease Management I</td>
<td>1</td>
</tr>
<tr>
<td>RESP313</td>
<td>Cardiopulmonary Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>RESP316</td>
<td>Teaching & Learning in Respiratory Therapy</td>
<td>2</td>
</tr>
<tr>
<td>RESP317</td>
<td>Clinical Application I: Basic Respiratory Care</td>
<td>2</td>
</tr>
<tr>
<td>RESP321</td>
<td>Physical Principles of Respiratory Care</td>
<td>2</td>
</tr>
<tr>
<td>RESP343</td>
<td>Clinical Lab I</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL 14

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESP308</td>
<td>Disease Management II</td>
<td>3</td>
</tr>
<tr>
<td>RESP318</td>
<td>Clinical Application II: Introduction to Critical Care</td>
<td>3</td>
</tr>
<tr>
<td>RESP323</td>
<td>Cardiopulmonary Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>RESP346</td>
<td>Ventilatory Support</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL 15

Summer Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESP319</td>
<td>Clinical Application III: Comprehensive Respiratory Care I</td>
<td>4</td>
</tr>
<tr>
<td>RESP309</td>
<td>Disease Management III</td>
<td>2</td>
</tr>
<tr>
<td>RESP352</td>
<td>Clinical Instruction & Lab II</td>
<td>2</td>
</tr>
<tr>
<td>RESP414</td>
<td>Concepts in Critical Care I</td>
<td>2</td>
</tr>
<tr>
<td>RESP450</td>
<td>Clinical Elective* (optional for this Semester)</td>
<td>1-3</td>
</tr>
</tbody>
</table>

TOTAL 11-14

Senior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL302</td>
<td>Professional Communications I</td>
<td>0.5</td>
</tr>
<tr>
<td>PHRM301</td>
<td>Pharmacology</td>
<td>2</td>
</tr>
<tr>
<td>RESP347</td>
<td>Neonatal and Pediatric Care</td>
<td>3</td>
</tr>
<tr>
<td>RESP401</td>
<td>Research Methods and Evidence-Based Practice</td>
<td>3</td>
</tr>
<tr>
<td>RESP407</td>
<td>Clinical Application IV: Neonatal/Pediatric Critical Care</td>
<td>3</td>
</tr>
<tr>
<td>RESP410</td>
<td>Clinical Application V: Comprehensive Respiratory Care I</td>
<td>3</td>
</tr>
<tr>
<td>RESP422</td>
<td>Sleep Disorders, Polysomnography and Sleep</td>
<td>1</td>
</tr>
<tr>
<td>RESP441</td>
<td>Effective Communication through Dynamic Dialogues (Elective)</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 15.5-17.5

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL303</td>
<td>Professional Communications II</td>
<td>0.5</td>
</tr>
<tr>
<td>HUMA420</td>
<td>Ethics and the Health Professions</td>
<td>3</td>
</tr>
<tr>
<td>RESP413</td>
<td>Clinical Application VI – Comprehensive Respiratory Care III</td>
<td>3</td>
</tr>
<tr>
<td>RESP431</td>
<td>Cardiopulmonary Home Care & Rehabilitation</td>
<td>2</td>
</tr>
<tr>
<td>RESP443</td>
<td>Leadership and Professional Behaviors</td>
<td>1</td>
</tr>
<tr>
<td>RESP415</td>
<td>Concepts in Critical Care II</td>
<td>3</td>
</tr>
<tr>
<td>RESP446</td>
<td>Patient Care Independent Study (Elective)*</td>
<td>2</td>
</tr>
</tbody>
</table>

Students may petition for a different Independent Study elective if/when offered; permission of instructor required

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESP42</td>
<td>Advanced Studies in Disease Management (Elective)</td>
<td>2</td>
</tr>
<tr>
<td>RESP450</td>
<td>Clinical Elective</td>
<td>1-3</td>
</tr>
<tr>
<td>RESP496</td>
<td>Teaching Independent Study (Elective)</td>
<td>1-3</td>
</tr>
<tr>
<td>RESP497</td>
<td>Research Independent Study (Elective)</td>
<td>1-3</td>
</tr>
<tr>
<td>RESP498</td>
<td>Leadership/Management Independent Study (Elective)</td>
<td>1-3</td>
</tr>
</tbody>
</table>

TOTAL 14.5-16.5

TOTAL CREDIT HOURS 70-74
RESP 307 Disease Management I (1 Credit Hour): This course introduces students to the general concepts of disease management and care planning, and to specific ways in which patients are assessed, including history and physical, laboratory studies, imaging procedures, pulmonary function studies, bronchoscopy, and other techniques. Students are introduced to practice guidelines for chronic cardiopulmonary disorders including discussions of etiology, clinical manifestations, diagnosis and treatment. Emphasis is placed on the clinical management of patients including formation and evaluation of evidence-based disease management plans.

RESP 308 Disease Management II (3 Credit Hours): This course continues with a review of the evidence base and practice guidelines for common cardiopulmonary disorders including discussions of etiology, clinical manifestations, diagnosis and treatment. Emphasis is placed on management of acute and critical disorders including formation and evaluation of evidence-based management plans and protocols. Pre-requisite: RESP 307

RESP 309 Disease Management III (2 credit hours). This course serves as the third and final course in the disease management sequence, and continues with a review of the evidence base and practice guidelines for additional common cardiopulmonary disorders not addressed in RESP 307 and RESP 308, including discussions of etiology, clinical manifestations, diagnosis and treatment. Emphasis is placed on management of acute and critical disorders including formation and evaluation of evidence-based management plans and protocols. Pre-requisite: RESP 308.

RESP 313 Cardiopulmonary Physiology I (4 Credit Hours): This introductory introduces the student to basic concepts leading to the understanding of the physiology of the cardiopulmonary system. Emphasis is placed on the student’s understanding of normal cardiopulmonary physiology as a background for the understanding of cardiopulmonary pathophysiology.

RESP 316 Teaching and Learning in Respiratory Therapy (2 Credit Hours): This course is designed to introduce respiratory therapy students to both the theory and practice of teaching and learning, and to begin to prepare students to better support their own learning as well as the learning of others. It provides the opportunity to acquire some of the requisite skills for teaching others and preparation for the various “teaching responsibilities” encountered in professional practice, which may focus on patients, their families, RT colleagues and students, and other health care professionals in a variety of settings. It also focuses on inclusiveness and strategies for supporting learners with disabilities, and culturally diverse backgrounds. Topics include theories, practices, strategies, research, and experiences designed to develop an appreciation for the complexities of teaching and learning, and to begin to develop teaching practices that best support and optimize learning.

RESP 317 Clinical Application I: Basic Respiratory Care (2 Credit Hours): This introductory preceptor-facilitated clinical course provides the student clinical practice at various clinical sites under direct supervision of therapist preceptors. Students apply basic therapeutic procedures learned in the laboratory setting to adult patients receiving respiratory care.

RESP 318 Clinical Application II: Introduction to Critical Care (3 Credit Hours): The student continues to provide care to adult patients under the supervision of assigned clinical instructors in local clinical affiliates. In addition to the delivery of basic respiratory care, the student is introduced to the intensive care environment and begins to work with patients requiring mechanical ventilation. The student continues to develop critical thinking, problem solving, clinical reasoning and inquiry skills. Prerequisite – RESP 317.

RESP 319 Clinical Application III: Comprehensive Respiratory Care I (4 Credit Hours): This course gives the student an opportunity to function more independently in all areas of respiratory care with an emphasis on critical care and patients on mechanical ventilation. Through more clinical, the student has the opportunity to sharpen critical thinking, problem solving, and reasoning skills in a variety of clinical settings under the direction of assigned preceptors in clinical affiliates. Prerequisite – RESP 318; Co-requisites: RESP 352
RESP321 Physical Principles of Respiratory Care (2 Credit Hours): Mathematical/algebraic, chemistry and biological concepts are reviewed to help ensure understanding of key respiratory care physical principles such as laws, properties and characteristics of gases, liquid flow under various physiologic conditions, humidity, change of state of matter, solutions, dilution calculations, mechanisms of medication action, and principles governing heat, magnetism and electricity.

RESP323 Cardiopulmonary Physiology II (4 Credit Hours): This intermediate course builds on Cardiopulmonary Physiology I with emphasis on pulmonary function testing, acid-base balance and regulation, cardiac and cardiovascular systems, cardiac electrophysiology, electrocardiograms and cardiac arrhythmias, introduction to advanced cardiovascular life support, cardiopulmonary response to exercise in health & disease, and effects of aging on the cardiopulmonary system. Pre-requisite: RESP 313.

RESP343 Clinical Lab I (3 Credit Hours): This first clinical laboratory course introduces students to the application of fundamental principles and basic therapeutic procedures for the adult patient receiving respiratory care. Emphasis is placed on the application of equipment and procedures used in basic respiratory care therapies. This course utilizes the laboratory setting to prepare students in the application of these principles and procedures for the adult patient using case scenarios and observation of student performance in a simulated patient care environment.

RESP346 Ventilatory Support (5 Credit Hours): This intermediate course introduces the student to the concepts and clinical application of mechanical ventilation and associated practices in all settings in which a respiratory therapist utilizes both the equipment and techniques of this form of life support. This course includes a clinical laboratory component which allows the student to apply their knowledge of the application of mechanical ventilators and related technologies and procedures in the laboratory and simulation settings. Pre-Requisite or Co-requisite: RESP 323

RESP347 Neonatal and Pediatric Care (3 Credit Hours): This course emphasizes the relationships between normal neonatal and pediatric development and cardiopulmonary physiology. Specific pathologies resulting from a variety of neonatal and pediatric conditions are discussed. Emphasis is placed on content, concepts and evidence-based practice guidelines related to the assessment, diagnosis and management of situations and conditions that may challenge and potentially compromise the cardiopulmonary system of the neonate and child. A focus on disease management and the role of the respiratory therapist is an integral part of this course.

RESP352 Clinical Instruction and Lab II (2 Credit Hours): This advanced clinical laboratory course is both a review of knowledge & skills in RESP343 and 346, and clinical courses RESP317 and 318. This course prepares students for application of more advanced principles, concepts and skills in critical/respiratory care, particularly mechanical ventilation. Prerequisites: RESP 343 and RESP 346.

RESP401 Research Methods and Evidence-Based Practice (3 Credit Hours): This course provides an introduction to concepts essential to research process, theory, construction and practices, in order to assist health professionals in becoming informed and critical consumers of their professional journals and the medical research literature. Emphasis is placed on understanding the process, concepts, and implementation, EPP, effectively applying search skills in locating relevant evidence in various electronic databases, applying research statistics, and judging the value of published studies with particular emphasis on statistical and clinical significance, as well as integrating and justifying clinical conclusions. This course meets Gen Ed requirements.

RESP407 Clinical Application IV Neonatal/Pediatric Critical Care (3 Credit Hours): This advanced faculty-facilitated clinical application course is conducted in neonatal and pediatric critical care units and in floor care settings (pediatric only). Students work directly with patients receiving mechanical ventilation and other advanced life support under direct program faculty supervision and mentorship.

RESP410 Clinical Application V: Comprehensive Respiratory Care II (3 Credit Hours): This advanced clinical preceptor-facilitated clinical application course is conducted in clinical affiliate hospitals, clinics, outpatient facilities and physician offices in a wide variety of geographic locations. Experiences serve as a further intensification of the summer adult critical care clinical applications course with students working under the direct supervision, guidance, and mentoring of clinical preceptors. In addition, students may rotate to a wide variety of clinical settings including both inpatient and outpatient programs. Prerequisites: RESP319 and RESP414. Co-requisite: PHRM301

RESP413: Clinical Application VI: Comprehensive Respiratory Care III (3 Credit Hours): This advanced, clinical applications course is conducted in selected areas of patient care in selected clinical affiliate hospitals, labs, clinics or physician offices. Students are embedded in specified clinical affiliate hospitals, clinics, outpatient facilities and physician offices in a wide variety of geographic locations. Experiences serve as a further intensification of the summer adult critical care clinical applications course with students working under the direct supervision, guidance, and mentoring of clinical preceptors. In addition, students may rotate to a wide variety of clinical settings including both inpatient and outpatient programs. Prerequisites: RESP407 and RESP410; Co-requisite RESP415.

RESP 414 Concepts in Critical Care I (2 credit hours): This advanced course emphasizes concepts in critical care, including mechanical ventilation techniques, advanced cardiac and hemodynamic monitoring, as well as extracorporeal life support. Emphasis is placed on terminology, diseases, pharmacology, fluid balance, and calculations related to various patient cases, classic case examples and simulation, interpretation of clinical case study/patient data, assessing the patient’s condition, initiating clinical interventions, formulation of a care plan and evaluating the impact of implemented strategies. Pre-or co-requisites: RESP 323, RESP 348.

RESP415 Concepts in Critical Care II (3 Credit Hours): This advanced course builds on previous knowledge and concepts of acid-base physiology, with emphasis placed on reviewing the basics of organic and biochemistry plus general acid-base principles in normal individuals and those with
primary and secondary disturbances in acid-base balance with discussion of metabolic, respiratory and mixed disturbances, renal physiology and pathophysiology, various acid-base disturbances, monitoring, instrumentation and quality assurance, and integrates these concepts into related concepts of optimizing care of a critically ill patient. Emphasis is placed on the interpretation of clinical case study/patient data, assessing the patient’s condition, initiating clinical interventions, formulation of a care plan and evaluating the impact of implemented strategies. Pre-Requisites: RESP 414.

RESP 422 Sleep Disorders, Polysomnography and Sleep Technology I (1 Credit Hour): This classroom course includes topics in sleep disorders, diagnostics and treatment. This course builds upon the student’s basic knowledge of sleep disorders covered in previous courses. This course includes the basics/physiology/pathophysiology of sleep and sleep disorders, theory and operation of sleep study instrumentation, application of respiratory care and other modalities, patient testing, sleep staging and scoring, arrhythmia recognition and other physiologic events, data acquisition, and patient management.

RESP 431 Cardiopulmonary Home Care and Rehabilitation (2 Credit Hours): This seminar course places emphasis on concepts, principles and special knowledge, equipment, techniques and patients seen in the home and ancillary environments, and in cardiopulmonary rehabilitation programs, specific to the role of the respiratory therapist. The second half of the course is dedicated to concepts, principles, special knowledge, equipment, techniques and patients seen in cardiopulmonary rehabilitation programs.

RESP 441 Effective Communication through Dynamic Dialogues (Elective) (2 credit hours): This course provides students with specific techniques using the Dynamic Dialogues method to improve communication with patients and families, as well as colleagues and peers. Students will explore the rationale for this technique as well as the specific steps involved, and will demonstrate mastery through observation and critique of patient and family interactions using Dynamic Dialogues.

RESP 442 Advanced Studies in Disease Management (Elective) (2 credit hours): This course provides an in-depth analysis of chronic airways diseases including the spectrum of obstructive airway disease, assessment and therapy along the spectrum, fixed vs. dynamic airway obstruction, evaluating patient outcomes, and ongoing review of the evidence base. Ethical considerations and palliative care are included in the course content. Prerequisite: RRT credential or senior BSRT student.

RESP 443 Leadership and Professional Behaviors (1 Credit Hour): This seminar course will focus on core values, generic abilities and the development of professional behaviors. The principles and foundational elements necessary for practicing in the professional realm of respiratory therapy and in the health care environment are reviewed with a focus on issues relating to standards of practice, communication, implementation of change, professionalism, effective leadership, and interpersonal and professional relationships.

RESP 446 Patient Care Independent Study (Elective) (2 Credit Hours): This clinical application course is conducted in various clinical affiliates as assigned by the Director of Clinical Education. Experiences serve as an optional, elective, intensification, and remediation of clinical coursework with students working under the direct supervision, guidance, and mentoring of selected clinical preceptors.

RESP 450 Clinical Elective (1-3 Credit Hours): This advanced clinical preceptor-facilitated clinical application course is conducted in various clinical affiliates. Experiences serve as an optional, elective intensification of clinical coursework under the direct supervision, guidance, and mentoring of selected clinical preceptors.

RESP 496 Teaching Independent Study (Elective) (1-3 Credit Hours): The student is paired with an educator in one of the Department’s affiliate organizations and/or with faculty within the academic department itself. The student works with the guidance of this mentor/these mentors to assist him/her/them in one or more of the following teaching venues: clinical laboratory, classroom, clinical, community.

RESP 497 Research Independent Study (Elective) (1-3 Credit Hours): The student is paired with an experienced researcher in one of the Department’s affiliate organizations and/or with faculty within the academic department itself. The student works with the guidance of this mentor/these mentors to assist him/her/them in a new and/or on-going research project.

RESP 498 Leadership/Management Independent Study (Elective) (1-3 Credit Hours): The student is paired with a manager/leader/supervisor in one of the Department’s affiliate organizations. The student works with the guidance of this mentor and/or his/her designee to assist the mentor in a mutually agreed upon project that somehow assists the mentor in the operations within the affiliate organization.
College of Medicine

SUNY Upstate Medical University's Alan and Marlene Norton College of Medicine has been educating students to become doctors for 188 years. Our nationally recognized faculty received their medical training at some of the most prestigious medical schools, residency and fellowship programs in the country. Our students are motivated and driven, yet very supportive of one another. All of this translates into an excellent education, which is evident in our graduates' success. The Upstate College of Medicine traces its origins to 1834 when Geneva Medical College, one of the nation’s first medical schools, was founded in Geneva, NY. While still in its infancy, Geneva Medical School gained the distinction of admitting Elizabeth Blackwell who became the first woman in the United States to graduate from medical school, first in her class. Geneva Medical School moved to Syracuse in 1871 to join the newly formed Syracuse University (SU). The SU College of Medicine expanded and in 1934, President Franklin D. Roosevelt laid the cornerstone of what is now Weiskotten Hall, Upstate’s main basic science, laboratory and instruction complex. In 1950, the College of Medicine was transferred from SU to the newly organized State University of New York and became SUNY Upstate Medical Center, one of two regional academic medical centers, the other in Brooklyn. Briefly called SUNY Health Science Center at Syracuse, the institution became SUNY Upstate Medical University in 2000. To recognize a generous donor, in December 2021 the medical school was named the Alan and Marlene Norton College of Medicine at Upstate Medical University.

MD Program
CIP Code: 51.1201

Fully accredited by the Liaison Committee on Medical Education, the MD Curriculum is ever-evolving to meet the needs of students and to address the health of patients. The plan of instruction and required courses outlined below may be modified subsequent to publication of the Academic Catalog. For further information, please contact the Associate Dean for Undergraduate Medical Education.

Objectives and Plan of Instruction

Faculty of the College of Medicine believe that broad exposure to both basic sciences and clinical disciplines is the best preparation for a medical career in a rapidly evolving health care environment. The curriculum provides integrated teaching of foundational and clinical sciences throughout the four years. The Graduation Competencies and Educational Program Objectives of the College of Medicine are defined and approved by the Curriculum Committee and disseminated to all faculty, students, and others responsible for the educational process. These objectives for the medical education program serve as statements of the knowledge, skills, behaviors, and attitudes that students are expected to learn or accomplish during the course of medical school at Upstate and assessments are driven from them. The Graduation Competencies and Educational Program Objectives are available online at:

Two campuses for clinical clerkships:

All students spend the first two years studying foundational sciences at the main campus in Syracuse, NY. Three quarters of the class remain in Syracuse for their required third year clinical clerkships and one quarter complete those clerkships in Binghamton, NY. Fourth year students can take electives at either campus.

Syracuse Campus

Students who take their third year clerkships at the Syracuse campus rotate through Upstate University Hospital, Upstate Golisano Children’s Hospital, Upstate Community Hospital, Syracuse VA Hospital, Crouse Hospital, Hutchings Psychiatric Hospital, and a variety of ambulatory practice sites throughout central New York.

University Hospital sponsors a Level I Trauma Center and its Poison Control Center services half of the counties in New York State. University Hospital includes multiple primary care and specialty programs, including the Upstate Cancer Center, the Upstate Stroke Center, the Clark Burn Center, the Designated AIDS Center (DAC), and the Joslin Center for Diabetes.

Binghamton Campus

The Binghamton Campus was established as a branch campus of the College of Medicine in 1976. Students who take their third year clerkships in Binghamton rotate through UHS Wilson Medical Center, UHS Binghamton General Hospital, UHS Chenango Memorial Hospital and Ascension Lourdes Hospital, as well as a network of family care and ambulatory sites. Through these clinical affiliates, the Binghamton program offers the same required clerkships as the Syracuse program. There is an emphasis on community-based medicine, continuity with attending physicians, and continuity with patients.

UHS Wilson Medical Center offers all of the clinical services associated with a large, acute-care facility including a perinatal center, neonatal intensive care unit, Level II Trauma Center, cardiac center and center for neuroscience. UHS Binghamton General Hospital includes a center for reconstructive surgery, a renal dialysis unit, a sleep disorders unit, mental health services and substance abuse services. Our Lady of Lourdes Memorial Hospital (Ascension Lourdes) includes emergency care, a surgery center, breast care center, a Regional Cancer Center and a hospice program.
Student Research Opportunities

Research is an important aspect of medical education at Upstate Medical University, and the College of Medicine faculty strongly support student participation in research. There are many opportunities for medical students to pursue research interests throughout their four years and students are encouraged to do so. Summer research opportunities are available between first and second year of the program. Many departments offer research elective courses at both the Syracuse and Binghamton campuses. For information about research elective courses and opportunities please refer to the College of Medicine Course Selection Book.

MD Curriculum Overview *

Required First Year Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMCM102</td>
<td>Molecules, Cells & Microbes</td>
<td>8</td>
</tr>
<tr>
<td>MMSK101</td>
<td>Musculoskeletal</td>
<td>5</td>
</tr>
<tr>
<td>MNSY101</td>
<td>Nervous System I</td>
<td>6</td>
</tr>
<tr>
<td>MCVR101</td>
<td>Cardiovascular, Respiratory I</td>
<td>5</td>
</tr>
<tr>
<td>MURR101</td>
<td>Urinary & Respiratory II</td>
<td>4</td>
</tr>
<tr>
<td>MGSI101</td>
<td>Gastrointestinal I</td>
<td>5</td>
</tr>
<tr>
<td>MENR101</td>
<td>Endocrine, Reproductive</td>
<td>4</td>
</tr>
<tr>
<td>MPTP101</td>
<td>Patients to Populations: Ethics, Law and Population Health</td>
<td>2.5</td>
</tr>
<tr>
<td>MFRI01</td>
<td>Foundations of Reasoning in Medicine I</td>
<td>2.5</td>
</tr>
<tr>
<td>MPOM105</td>
<td>Practice of Medicine I</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL YEAR 1</td>
<td></td>
<td>49</td>
</tr>
</tbody>
</table>

Required Second Year Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFSK201</td>
<td>Foundations & Skin</td>
<td>5</td>
</tr>
<tr>
<td>MHON201</td>
<td>Hematology & Oncology</td>
<td>4</td>
</tr>
<tr>
<td>MNSY201</td>
<td>Nervous System II</td>
<td>5</td>
</tr>
<tr>
<td>MCVR201</td>
<td>Cardiovascular, Respiratory II</td>
<td>5</td>
</tr>
<tr>
<td>MENR201</td>
<td>Renal, Reproductive, Endocrine</td>
<td>5</td>
</tr>
<tr>
<td>MGSI201</td>
<td>Gastrointestinal II</td>
<td>4</td>
</tr>
<tr>
<td>MPOM201</td>
<td>Practice of Medicine II</td>
<td>8</td>
</tr>
<tr>
<td>MFRI01</td>
<td>Foundations of Reasoning in Medicine II</td>
<td>2.5</td>
</tr>
<tr>
<td>TOTAL YEAR 2</td>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>

Required Third Year Clerkships:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCN2000</td>
<td>Medicine</td>
<td>10</td>
</tr>
<tr>
<td>FAMP1600</td>
<td>Family Medicine</td>
<td>5</td>
</tr>
<tr>
<td>PYCH6800</td>
<td>Psychiatry</td>
<td>5</td>
</tr>
<tr>
<td>PEDS5600</td>
<td>Pediatrics</td>
<td>5</td>
</tr>
<tr>
<td>NEUR3600</td>
<td>Neuroscience</td>
<td>5</td>
</tr>
<tr>
<td>OBGY3600</td>
<td>Obstetrics/Gynecology</td>
<td>5</td>
</tr>
<tr>
<td>SURG2000</td>
<td>Surgery and Surgical Subspecialties</td>
<td>7</td>
</tr>
<tr>
<td>EMED1300</td>
<td>Emergency Medicine</td>
<td>3</td>
</tr>
<tr>
<td>CBHX2400</td>
<td>Clinical Bioethics</td>
<td>1</td>
</tr>
<tr>
<td>PRVM6400</td>
<td>Population Health for Physicians</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL YEAR 3</td>
<td></td>
<td>46.5</td>
</tr>
</tbody>
</table>

Required Fourth Year:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td>(see distribution below)</td>
<td>25</td>
</tr>
<tr>
<td>INTD9100</td>
<td>Transition to Residency</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL YEAR 4</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

* The curriculum is currently under review. Requirements and course descriptions may change.

For other information regarding elective credits, please use the following link: www.upstate.edu/curriculum/courses/electives.php.

Elective Program (25 required credits)

Students may select from more than 160 elective courses listed in the Course Selection Book. Electives are offered at Upstate University Hospital, the Binghamton Clinical Campus, and affiliated institutions. Electives may also be taken extramurally. Students are encouraged to consult their advisors to design an elective program that meets their individual interests and needs.

Within the 25 required credits, students must select a 4-credit Acting Internship and a 2-credit Basic Science Selective. A minimum of 9 elective credits must be taken outside of any one specific department, and only 12 of the required elective credits may be taken in an extramural experience. Students may take more than the minimum required number of elective credits.

Additional Graduation Requirements

Candidates for graduation must:

1. Satisfactorily complete the required and elective curriculum.
2. Remediate any academic deficiencies incurred.
3. Be in good standing (i.e. not on academic or disciplinary probation).
4. Pass USMLE Step 1 of the United States Medical Licensing Exam (USMLE) in order to progress into the clinical years.
5. Pass USMLE Step 2 Clinical Knowledge.
6. Pass Upstate’s Clinical Skills Examination.
7. Satisfy all financial obligations due to Upstate Medical University, including at least eight semesters of tuition (except transfer students and students admitted with advance standing who must pay two semesters of tuition for every year of medical education completed at Upstate Medical University).
MD Course Descriptions

First Year

MCVR101 Cardiovascular, Respiratory I (5 credit hours): This Unit will emphasize medical knowledge as it applies to cardiovascular and respiratory disease. Learning objectives include anatomic structure and physiologic function of the heart, lungs, airways and blood vessels. These structures will be studied in the neck and thorax with continuity of the circulatory, nervous, and major structures between the regions. Radiographic imaging and clinical testing modalities such as electrocardiograms (EKGs) will be presented to support integration and application of clinical content. Lectures in classroom and flipped, group studies with step 1 type clinical vignettes, and case-based sessions will reinforce unit learning objectives and engage the student for development of life-long learning skills.

MENR101 Endocrine, Reproductive (4 Credit Hours): In this Unit, students will learn to recognize and understand the normal structure and function of the major endocrine and reproductive organs and glands. This includes the hypothalamus, pituitary, adrenal, thyroid, parathyroid, pancreas, gonads, and reproductive organs. Foundational lectures on vitamins and minerals are also included. Students will gain an understanding of the intricate interplay of hormonal pathways that contribute to normal endocrine and reproductive function. Using clinical, laboratory, radiology and pathologic data, students will begin to identify the ways in which the balance of these systems can be disturbed, leading to common and uncommon endocrine and reproductive disorders.

MFRM101 Foundations of Reasoning in Medicine I (2.5 Credit Hours): This longitudinal course integrates clinical medical reasoning into our curriculum. FRM-1 is an active, case-based learning course that integrates with the horizontally constructed system-based Units of year 1, in order to align with content for each individual block. These interactive sessions are done in small groups of approximately 10 students. They involve evidenced-based medicine, small group presentations, and active participation with self-directed learning during the discussion of each clinical presentation.

MGSII01 Gastrointestinal I (5 Credit Hours): This Unit will provide a comprehensive and thorough coverage of the normal gastrointestinal tract. Special attention will be given to specific disease states and clinical presentations, and how they arise from both changes in physiology, cell structure and the underlying metabolic disruptions. Upon completion of this Unit, students will be expected to interpret, integrate and demonstrate the structural metabolic and physiological function of the GI tract in a normal state. Students will also be able to relate the normal state to the disease state.

MMCM102 Molecules, Cells, & Microbes (MCM) (8 Credit Hours): This 7-week course, spanning Units 1 and 2, presents foundational material in the subject areas of Bacteriology, Virology, Parasitology, Cell and Molecular Biology, Microscopic Anatomy, Biochemistry, Genetics, Developmental Biology and Immunology. This material will be enhanced by frequent illustration of patient care applications in lectures, clinically-oriented small group sessions, and microscopic anatomy laboratories. The primary purpose of this course is to prepare students for systems-based coursework which begins in Unit 3 of MS1 and extends through the end of the MS2 year.

MMSK101 Musculoskeletal (5 Credit Hours): Students will learn the clinically relevant physiology, gross anatomy and microscopic anatomy of the musculoskeletal system, including muscles, bones, neurovascular supply and joint structure. Students will learn the normal gross and microscopic anatomy of the skin including surface anatomy and an introduction to cadaver dissection. The basic physiological processes involved in maintaining homeostasis are examined throughout this course. During this Unit, students will be given multiple clinical cases to enhance their learning. Learning will be enriched by case-based sessions, radiologic demonstrations, hands on lab work, and clinically oriented small groups.

MNSY101 Nervous System I (6 Credit Hours): This Unit will provide students with current scientific knowledge of human nervous system structure and function. Students will also begin to develop an understanding of abnormalities in nervous system structure/function and disease states. Instruction will include primary exposure to, and appreciation of, how nervous system pathology manifests in abnormal clinical and laboratory findings.

MPOM105 The Practice of Medicine I (7 credit hours): Students will further master efficient medical interviewing, physical examination and communication skills with patients. Students will explore how to synthesize data gathering information into a plausible explanation of the patient’s health status. Students will learn patterns of disease and syndromes in a small group setting with peers and by working closely with standardized patients. They will also continue to develop their skill at efficiently presenting a patient in, and develop initial treatment plans for, a variety of common diagnoses seen in clinical practice.

MPTP101 Patients to Populations: Ethics, Law & Population Health (2.5 Credit Hours): This is a longitudinal, case-based course in bioethics, law, population health, epidemiology, healthcare policy, and related social science disciplines. The course begins with a series of foundational lectures between Units 1 and 2. In Units 2 through 8, students will meet regularly with peers and expert faculty facilitators from the Center for Bioethics and Humanities and the Department of Public Health and Preventive Medicine to engage in case-based small group discussion. All cases begin with an encounter between patient and physician and work outward to a discussion of health systems, policy and social accountability. Self-directed learning, in the form of independent preparation for small group discussions, is expected. Assessment is based upon small group participation, performance on multiple-choice examinations, group presentations, and written assignments.
MURR101 Urinary & Respiratory II (4 Credit Hours):
After the completion of this Unit, students will be able to describe the micro and macro function of the urinary system as well as the upper airway respiratory system. Student will demonstrate a strong understanding of the mechanisms of renal physiology, and respiratory physiology in preparation for year 2 when pharmacology and pathology of the kidney and lungs will be discussed. These foundations will allow students to successfully interpret clinical scenarios encompassing, but not limited to, laboratory studies, radiologic studies, and clinical case scenarios.

Second Year

MCVR201 Cardiovascular, Respiratory II (5 Credit Hours): This Unit builds on the foundation of MS1 Unit MCVR101. Students will use their knowledge of normal cardiac and pulmonary function as they learn to differentiate the deficiencies associated with infection, neoplasm, and anatomical pathology. Successful learners will be able to describe the common diseases that affect these systems, the most useful imaging and laboratory tests for differentiating among them, and the first-line treatments. When treatment is pharmacological, the Unit will include discussion of contraindications and side effects. The unit lectures, team-based learning sessions, and clerkship practice session will include multiple examples of clinical relevance, and will coordinate, with case-based learning in the Foundations of Reasoning in Medicine course.

MENR201 Renal, Reproductive, Endocrine (5 Credit Hours): High yield clinical content in the Unit includes syphilis, systemic lupus erythematosus, sexually transmitted infections, arthritis, gout, breast cancer, and male and female reproductive pathology. Renal pathophysiology receives comprehensive attention in this Unit. Pituitary, thyroid, adrenal, and bone pathology, including derangements in metabolic homeostasis, will be covered. The pharmacology related to treating alterations within endocrine axes will be coupled with clinical case discussions. Congenital and consequent neonatal infection will be surveyed. Step 1 relevance will be maintained throughout by citing histopathologic, laboratory, radiographic, and patient characteristics that betray the mechanistic underpinnings of disease, which drive the Step 1 examination.

MFRM201 Foundations of Reasoning in Medicine II (5 Credit Hours): This longitudinal course is designed to promote the thought processes necessary to develop a student's intellectual capacity as a practicing physician. Similar to FRM-1 in the MS1 year, FRM-2 is an active, case-based learning course that integrates with the horizontally constructed system-based Units of year 2, in order to align with content for each individual block. These interactive sessions are done in small groups of approximately 10 students. FRM-2 is primarily designed to teach the clinical reasoning skills necessary to evaluate patients, understand disease and make rational, evidence-based decisions. These goals will be accomplished through small group sessions, during which students will be expected to work through clinical cases in order to elicit the main teaching points of the sessions, develop differential diagnoses, and concept maps for the diagnosis and treatment of the disease their simulated patients will possess. Students will continue to have exposure to the domains of ethics, law, biostatistics, epidemiology, economics, public policy, medical anthropology and sociology, and population health. In addition, Evidence-Based Medicine (EBM) is a component of this course.

MFSK201 Foundations & Skin (5 Credit Hours):
This first Unit will prepare you for rest of the MS2 year and the Step 1 exam by focusing our attention on principles of pharmacology and general pathology. The foundations of pharmacology and pathology will include mechanisms of drug effects, cell injury and death, tissue repair and regeneration. We will then consider the pathogens responsible for, and the treatment of, skin infections. Finally, we will cover the recognition and treatment of skin lesions and pathologies.

MNSY201 Nervous System II (5 Credit Hours):
Unit 3 “Nervous System” will provide a vertical integration with the anatomy and physiology of the nervous system studied in the first year, as well as a horizontal integration between behavioral sciences, pathology and pharmacology of the nervous system in the second year. Students will be guided toward a clear understanding of human behavior, behavioral manifestations of illness, psychopathology, diagnosis and treatment of psychiatric disorders, including the pharmacological principles of modern therapeutics (mechanism of action, clinical indications and side effects of the drugs). CNS and muscle pathology will be described with an emphasis on common tumors in adult and pediatric populations, as well as common neurodegenerative conditions. Modern evolving areas such as chronic traumatic encephalopathy and molecular features of tumors will be covered. Eye, and head and neck pathology, will also be discussed. Histologic features and prognosis will be emphasized.

MGSI201 Gastrointestinal II (4 Credit Hours): This Unit builds on the foundations of MS1 Unit MGSI101 and MS2 Unit MENR201. Students will use their knowledge of normal endocrine and digestive function to understand the deficiencies associated with infection, neoplasm, and anatomical pathology of the pancreas, liver, and luminal GI system. Successful learners will be able to describe the common diseases that affect these systems, their clinical manifestations, the most useful imaging and laboratory tests for differentiating among them, and their first-line treatments. When the first-line treatment is pharmacological, the Unit will include discussion of dosage and side effects. Lectures and team-based learning sessions will include multiple examples of clinical relevance, and will coordinate with case-based learning in the Foundations of Reasoning in Medicine course.

MHON201 Hematology & Oncology (4 Credit Hours): Unit 2 covers benign and malignant disorders of blood and lymphatic organs. Hematopathology and molecular diagnostics are emphasized in the differential diagnosis of leukemias and lymphomas. Inherited and acquired blood disorders are studied, including defects in the development of blood cells and blood clotting factors.
selective and appropriate use of blood components in transfusion medicine are presented. Blood-borne pathogens are discussed with an emphasis on HIV pathophysiology, clinical presentation, and treatment. Pharmacological agents used to treat cancers are presented. The immunological basis for many hematological disorders is discussed and novel treatments that are immune-based are covered.

MPOM201 The Practice of Medicine II (8 Credit Hours): Students will further master efficient medical interviewing, physical examination and communication skills with patients. Students will explore how to synthesize data gathering information into a plausible explanation of the patient’s health status. Students will learn patterns of disease and syndromes in a small group setting with peers and by working closely with standardized patients. They will also continue to develop their skill at efficiently presenting a patient in, and develop initial treatment plans for, a variety of common diagnoses seen in clinical practice.
Third Year Clerkships

Internal Medicine, Syr/Bing Course #MDCN2000 (10 credits). Through active participation in the care of both inpatients and outpatients, the third-year student continues to develop knowledge and skill in diagnosis, communication, note-writing, presentation as well as acquire experience in the fundamentals of treatment. Students take medical histories, perform physical examinations and provide assessments and plans on assigned patients. Understanding of the biochemical, physiological and psychosocial phenomena which underlie some patients’ illnesses are developed on both inpatient and outpatient teams, as well as sub-specialty services.

Family Medicine, Syr/Bing Course #FAMP1600 (5 credits). This ambulatory-based clerkship provides training in the basic tenets of primary, family-based care. Clinical preventive medicine and the treatment of acute and chronic diseases are emphasized in both clinical and didactic aspects of the clerkship. The goals of the clerkship are for every medical student to:

- have point-of-care training in a family doctor's office
- demonstrate competence in the core knowledge and skills of family medicine
- understand the role of the family physician

Additionally, students will recognize that high quality information, balanced with patient preferences and clinical judgement, is the basis for intelligent decision making. Developing an understanding of the intellectual process and acquiring the skills for life-long learning will assist students in achieving the goals of the Family Medicine Clerkship. In Binghamton, this clerkship is longitudinal. Students spend one half day per week with a preceptor during third year.

Psychiatry, Syr/Bing Course #PYCH6800 (5 credits). In this clerkship, students learn interviewing techniques, refine diagnostic skills, prepare case studies and participate in the treatment programs of the clinical unit to which they are assigned. Liaison/consultation psychiatry is also emphasized. Students learn to evaluate patients in the ED and outpatient clinics. Faculty provide seminars to review psychopathology and treatment methods.

Pediatrics, Syr/Bing Course #PEDS5600 (5 credits). This clerkship provides students with a foundational experience in Pediatrics. Students develop basic skills in taking pediatric histories; perform physical examinations on newborns, infants, children and adolescents; assess pediatric developmental milestones; and interpret clinical data. Preventive pediatrics is emphasized.

Neuroscience, Syr/Bing Course #NEUR3000 (5 credits). This clerkship integrates neurology and neurosurgery instruction. Students see common and uncommon neurological disorders and obtain concentrated training in taking a neurological history and performing a neurologic examination.

A core curriculum emphasizes neurologic topics common in general practice.

Obstetrics/Gynecology, Syr/Bing Course #OBGY3600 (5 credits). Core lectures and active participation in patient care form the basis for this clerkship. The clerkship provides clinical opportunities for students to develop skills and knowledge related to antepartum care, management of normal labor and delivery, care of the newborn, postpartum care, and common ambulatory and inpatient gynecologic concerns.

Surgery and Surgical Subspecialties, Syr/Bing Course #SURG8200 (7 credits). During this clerkship, the student participates in the care and management of patients on general surgical services as well as subspecialty services. Bedside and operating room instruction is supplemented by lectures and WISE MD Case modules. Students learn to recognize problems of a surgical nature, understand the relevant pathophysiology, and gain some familiarity with surgical therapy.

Emergency Medicine, Syr/Bing Course #EMED1300 (3 credits). This rotation introduces students to core concepts and principles in Emergency Medicine. Emphasis is on focused history and physical examination skills, developing a differential diagnosis, and developing clinical care plans. Principles of trauma care, shock and critically ill patients, and other acute life threatening illness will be taught in the clinical setting as well as in the Simulation Center.

Clinical Bioethics, Syr/Bing Course #CBHX2400 (1 credit). In this longitudinal concurrent case-based course which spans the third year, students meet in small groups with a faculty facilitator to discuss ethical issues that present in patient care. Students bring their own cases for discussion, and faculty present cases from the literature to provide the opportunity to discuss and learn about ethical principles and a method of case analysis for ethical concerns raised in patient care.

Population Health for Physicians, Syr/Bing Course #PRVM6400 (0.5 credits). In this longitudinal concurrent course which spans the third year, students take part in several small group discussions that cover public health, health policy, health economics, disease reporting and clinical prevention. Students also participate in a tabletop emergency preparedness exercise and may have the opportunity for site visits.

Fourth Year

INTD9100 Transition to Residency (3 credits) Transition to Residency (TtR) is a course offered in late spring for fourth year students. It is designed to prepare students for their first day as an intern. It consists of lectures, small group skill sessions, and procedure sessions. The skill sessions in the course are designed to encompass some of the Core Entrustable Professional Activities (EPA) for entering residency from the Association of American Medical Colleges (AAMC).
The Rural Medical Scholars Program (RMSP)/previously RMED
https://www.upstate.edu/student-handbook/medicine/md-program/special-opportunities.php

The University has been providing rural training opportunities since the 1960s and remains committed to supporting educational pathways to support rural practice. This program is an evolution and expansion of the Rural Medical Education (RMED) Program which was established in 1989. The Rural Medical Scholars Program (RMSP) was created in 2007 to actively identify, recruit and nurture those interested in future rural practice. The Office of Admissions seeks applicants who may have an interest in practicing in small town or rural settings, and provides a holistic review of their applications for the College of Medicine. Interested applicants apply by selecting the Rural Medicine Supplemental option on Upstate’s secondary application.

RMSP is not a clinical track program, but does offer four years of elective training in rural health. Once admitted into the College of Medicine, RMSP students are automatically enrolled in the preclinical course, Introduction to Rural Health (FAMP1646). RMSP students may continue participating in rural medicine electives and receive a microcredential in Rural Medicine. To be eligible for the microcredential students must complete four rural medicine courses and a signature Capstone project. Those students not admitted through RMSP are welcome to join upon approval from the Program Director, Carrie Roseamelia. Rural medicine electives include:

FAMP1646 Introduction to Rural Health (2 Credits)
PREREQUISITES: None

ELECTIVE DESCRIPTION: The course integrates meaningful community service with discussions of small-town practice. Students develop skills in teaching and mentorship, and clinical reasoning through case discussion. The course affords community preceptors an avenue to discuss the opportunities related to rural practice. For course credit, medical students teach a clinical case to teams of high school students in preparation of a case competition hosted by Upstate’s Rural Med Program. The course meets once a month for 2.5 hours, August through March.

FAMP1650 Rural Medical Education Program (4 Credits)
PREREQUISITES: Internal Medicine, Pediatrics, Ob/Gyn, Psychiatry, Neurology

ELECTIVE DESCRIPTION: Students live and train in small-town host communities. An emphasis is placed on the continuous and comprehensive care of patients. Students develop skills in the diagnosis and management of a wide range of common ambulatory and secondary hospital problems of patients across the age spectrum. Students participate in office hours and conduct inpatient rounds, laboratory work, night call, and case presentations with small town, community-based attendings. Students taking this elective must also complete their three (of eight) core clinical rotations: Family Medicine, Surgery and Emergency Medicine in the host community. Students negotiate their clinical sites with the Program Director. Students with academic deficiencies or professionalism concerns cannot participate in this course.

FAMP1651 Rural Immersion Week (1 Credit)
PREREQUISITES: FAMP1646

ELECTIVE DESCRIPTION: This one-week elective course is held the summer after MS1. Students live and train in a small town working side-by-side with local physicians. Additionally, students meet with community leaders from various agencies including: local businesses, state assembly, public health, hospital administration, behavioral health, and hospice to delve deeply into the rural health needs of the host community. Students provide mentorship to local high school students, and spend time volunteering in the community. They work together to create a short video of their experiences to share with the host community upon completion of the week’s events.

FAMP1652 Rural Medicine Community Health AI (4 Credits)
Acting Internship Selective
PREREQUISITES: None

ELECTIVE DESCRIPTION: The goal of this course is to prepare an MS4 to assume the role of a first-year resident in caring for patients across the lifespan in an ambulatory Family Medicine Clinic, managing acute and chronic conditions, and providing wellness and prevention care. Students perform all aspects of evaluation and management visits including: taking a history; performing a physical; reviewing diagnostic tests, notes, records; formulating a differential diagnosis; assessing chronic conditions; identifying gaps in guideline and/or evidence based wellness and prevention; formulating and ordering appropriate.

FAMP1653 RMED Summer Experience (4 Credits)
PREREQUISITES: None

ELECTIVE DESCRIPTION: This four-week elective is held the summer after MS1. The goal of this course is to provide a rich community-based summer experience to enhance the students’ clinical knowledge through hands-on practice and mentorship. Students are expected to: care for patients across the lifespan, manage acute and chronic conditions, as well as provide wellness and prevention care. Students are encouraged to train with physicians across specialties including: Family Medicine, Surgery and Emergency Medicine at the host community. Students negotiate their clinical sites with the Program Director.
FAMP1654 Rural Medicine Curriculum Design
Elective (1 Credit)
PREREQUISITES: None

ELECTIVE DESCRIPTION: This elective is offered to second- and fourth-year students interested in medical education and teaching. Students assist the Program Director in creating curriculum for rural medicine sessions and community outreach activities involving high school students. Design partners identify session topics, recruit speakers, facilitate case discussions, and develop learning activities for high school learners. Some design partners may take part in medical education research opportunities.

FAMP1657 Rural Medicine Clinical Training through Journey Mapping (2 Credits)
PREREQUISITES: None

ELECTIVE DESCRIPTION: For this elective second-year medical students delve into patient care through interactions with their patient educator and community preceptor. A small-town physician team, alongside a fourth-year medical student, are matched with small groups of second year students. Through guided sessions from August to January, the medical students come to know their patient and the patient’s condition. Students practice skills related to: patient interviewing, notetaking, case review and discussion, physical exam and presentation.

FAMP1658 Rural Medicine to Basic Sciences through Journey Mapping and Teaching (2 credits)
PREREQUISITES: None

For this elective fourth-year medical students are paired with community physician-patient teams to delve deeply into the anatomy and physiology of their patient’s condition, using their basic science knowledge and research skills. Students are to teach their second year students how the disease progression impacts the patient, focusing on the pertinent science units from first and second year.
Upstate Public Health Program
CIP Code: 51.2201

SUNY Upstate Medical University offers the Upstate Public Health Program. Upstate Public Health students strive to understand public health problems and to develop innovative methods to improve the health of their communities and larger populations. Graduates of the program will be prepared to assume leadership roles to reduce preventable diseases, injuries, and health disparities through a specialized focus on either data and analytics, global health and translational science, or population health for clinicians. As an interdisciplinary degree, the MPH offers our students flexibility in regards to their interest and career aspirations.

The diversity and complexity of today's public health concerns require professionals to have a broad base of knowledge, skills and experiences.

The Upstate Public Health Program is accredited by the Council of Education for Public Health (CEPH), the independent agency recognized by the US Department of Education to accredit graduate schools of public health and certain public health programs outside of the schools of public health. CEPH assists schools and programs in evaluating the quality of their instructional, research, and service efforts, and grants accreditation to those schools and programs that meet its published criteria.

The plan of instruction and required courses outlined below may be modified subsequent to publication of the Academic Catalog.

Master of Public Health Degree (MPH)

The Master of Public Health is a professional degree which provides a population-based perspective and is designed to prepare students to investigate and manage public health problems. The Upstate Public Health MPH degree program requires a minimum of 42 credit hours and accommodates both full-time and part-time students. Full-time students have the option to complete their degree in as little as 18 months; however, students may take up to five years to complete the degree.

Most students enrolled in the MPH degree are enrolled in either the Data and Analytics Concentration or the Global Health and Translational Science Concentration. The Population Health for Clinicians Concentration is primarily for students in the dual degree MD/MPH program and for students in special pathway programs for medical school, e.g., Public Health Scholars.

Requirements of the MPH – Data and Analytics Concentration

Foundational Courses (24 Credit Hours)

MPHP601 Principles of Epidemiology (3 Credit Hours)
MPHP602 Principles of Biostatistics (3 Credit Hours)
MPHP603 Principles of Environmental Health (3 Credit Hours)
MPHP 604 Social and Behavioral Dimensions of Public Health (3 Credit Hours)
MPHP606 Public Health Policy (3 Credit Hours)
MPHP607 Public Health Foundations (3 Credit Hours)

Concentration Specific Courses (15 Credit Hours)

MPHP657 Public Health Research Methods (3 Credit Hours)
MPHP660 Program Planning and Evaluation (3 Credit Hours)

Elective(s) (Minimum of 3 Credit Hours)

Total credit hours = 42

Requirements of the MPH – Global Health and Translational Science

Foundational Courses (24 Credit Hours)

MPHP601 Principles of Epidemiology (3 Credit Hours)
MPHP602 Principles of Biostatistics (3 Credit Hours)
MPHP603 Principles of Environmental Health (3 Credit Hours)
MPHP604 Social and Behavioral Dimensions of Public Health (3 Credit Hours)
MPHP607 Public Health Foundations (3 Credit Hours)

Concentration Specific Courses (12 Credit Hours)

MPHP657 Public Health Research Methods (3 Credit Hours)
MPHP660 Program Planning and Evaluation (3 Credit Hours)

Elective(s) (Minimum of 6 Credit Hours)

Total credit hours = 42
Integrative Learning Experience - Comprehensive Exam
In their final semester, students take a comprehensive exam – an integrative learning experience – that incorporates all of the coursework and subject matter they have learned in the program.

Requirements of the MPH - Population Health for Clinicians Concentration

Foundational Courses (24 Credit Hours)
- MPHP601 Principles of Epidemiology (3 Credit Hours)
- MPHP602 Principles of Biostatistics (3 Credit Hours)
- MPHP603 Principles of Environmental Health (3 Credit Hours)
- MPHP604 Social and Behavioral Dimensions of Public Health (3 Credit Hours)
- MPHP605 Public Health Policy (3 Credit Hours)
- MPHP606 Public Health Foundations (3 Credit Hours)
- MPHP657 Public Health Research Methods (3 Credit Hours)
- MPHP660 Program Planning and Evaluation (3 Credit Hours)

Concentration Specific Courses (15 Credit Hours)
- MPHP649 Public Health and Biopsychosocial Primary Care (3 Credit Hours)
- MPHP655 Advanced Epidemiology (2.5 Credit Hours)

Medical school courses that count as concentration courses:
- MPTP101 Patients to Populations (2.5 Credit Hours)
- MFRM201 Foundations of Reasoning in Medicine II, EBM component only (2.5 Credit Hours)
- PRVM6400 Population Health for Physicians (0.5 Credit Hours)
- CBHX2400 Clinical Bioethics (1 Credit Hour)
- MPHP698 Applied Practice Experience (3 Credit Hours)

Elective(s) (Minimum of 3 Credit Hours)

Total credit hours = 42

Integrative Learning Experience - Comprehensive Exam
In their final semester of their MPH year, students take a comprehensive exam – an integrative learning experience – that incorporates all of the coursework and subject matter they have learned in the program.

MD/MPH Degree
Together with the MD Program, the Upstate Public Health Program offers a dual degree program for students interested in pursuing both the MD and MPH degrees. The MD/MPH typically takes five years to earn both degrees. Most students would complete the MPH courses in their first year of the program.

As such, the timeline would follow:

MD Coursework (Year One)
- MSI Courses (Year Two)
- MSII Courses (Year Three)
- MSIII Required Clerkships (Year Four)
- MSIV (Year Five)

Students enrolled in the MD/MPH dual degree program have the option of enrolling in either the Population Health for Clinicians Concentration or the Global Health and Translational Science Concentration.

Current Medical Students (regardless of year) interested in pursuing their MPH should contact the Program at PublicHealth@upstate.edu.

Certificate of Advanced Study in Public Health (CAS)
The Certificate of Advanced Study in Public Health (CASPH) is a 5 course (13-15-credit hour) program of study. The certificate can be completed in as little as two semesters but students have up to five years to complete the requirements for the program.

Certificate Coursework:
Certificate of Advanced Study (CAS) in Public Health Students will work with their academic advisor to come up with a Plan of Study that will meet their Educational and Career Goals. All CAS students are required to take five Public Health courses. They can opt to take any course they choose, as long as they have already completed the pre-requisites for the courses that they select.

Introduction to Biostatistics and Epidemiology Microcredential
Biostatistics and Epidemiology are at the core of the field of Public Health. This microcredential will introduce learners to the major Biostatistics and Epidemiology concepts and how they apply to the field of public health. Through examples and practical applications during their classes, students hone skills that they can later apply to the work that they do outside of the classroom.

Microcredential Coursework:
- MPHP601 Principles of Epidemiology (3 Credit Hours)
- MPHP602 Principles of Biostatistics (3 Credit Hours)

The microcredential will culminate with a 1000 word micro research report. Students will complete this report upon successful completion of MPHP 601 and 602.
Foundational Course Descriptions

MPHP601 Principles of Epidemiology (3 Credit Hours). Periods offered: fall and summer. This course introduces the basic principles of epidemiology applied to public health problems. The focus of this course is on epidemiologic measures and study designs. Topics covered in this course include disease transmission, levels of prevention, morbidity and mortality, surveillance, screening, descriptive and analytic study designs, bias, measures of association, causation, and ethical and professional issues in epidemiology. The application of epidemiology for the evaluation of health services and screening programs and the influence of epidemiology on public policy will be presented.

MPHP602 Principles of Biostatistics (3 Credit Hours). Periods offered: fall and summer. This course introduces the basic principles of biostatistics and requires students to apply these principles to describe and analyze public health data. Topics include descriptive statistics, probability distributions, point and interval estimation of population parameters, and hypothesis testing. A variety of one- and two-sample parametric and non-parametric tests for continuous and categorical data are also covered, as are one-factor ANOVA and simple linear regression. Students will analyze data using SPSS software, interpret results and present findings in a variety of formats.

MPHP603 Principles of Environmental Health (3 Credit Hours). Period offered: spring. This course familiarizes students with the major domains of environmental health and environmental sciences: environmental social justice, risk assessment and risk management, healthy housing and indoor air pollutants, infectious disease, water quality, occupational health and safety, toxicology, liquid and solid waste, the built environment, energy resources, outdoor air pollution, food quality and security, and global health. Student will learn how to critically appraise the literature to address an environmental event from a public health perspective. The course will use lectures, reading, and videos to deliver content and will require students to work in groups to explore different domains, content, and perspectives in environmental health.

MPHP604 Social and Behavioral Dimensions of Public Health (3 Credit Hours). Period offered: fall. This course introduces students to the social and behavioral sciences used to explain differences in society. In addition, the course focuses on behavioral factors that may influence the environment and the interactions within society. The course focuses on theories related to human behavior – individual self, interaction between individuals and the interaction within societies. The course reviews community level theories that influence health behaviors. This helps students understand how to apply theory to research and program planning and evaluation designs. This course threads in heath disparities and the impact of the social, biological, physical, and cultural factors that affect public health.

MPHP606 Public Health Policy (3 Credit Hours). Period offered: spring. The purpose of this course is to introduce students to the essential elements of health policy and policy analysis, and to explore how health policy shapes the health care environment and impacts population health. Concepts of public health policy will be reinforced through case studies and discussions about policies in action at the international, national, and local levels.

MPHP607 Public Health Foundations (3 Credit Hours). Period offered: fall. This course provides students with foundational knowledge of public health core functions and essential services. Students receive a grounding in the fundamentals necessary to approach management and administration of public health organizations. Using the framework of public health accreditation, this course addresses topics such as community health assessment, community engagement, community improvement planning, strategic planning, human resource management, budgeting, quality improvement, and systems thinking.

MPHP657 Public Health Research Methods (3 Credit Hours). Period offered: fall. This course introduces students to research methods commonly used in public health, and covers quantitative, qualitative and mixed methods approaches. Course topics include identifying a study question and study hypotheses, study design specifics, data acquisition methods, survey construction (questions and format), data management principles, qualitative & quantitative analysis methods, as well as the write up and dissemination results. Through homework and projects, students develop a survey, plan, develop and manage a research data base using SPSS, run appropriate data analyses in SPSS, interpret and summarize the results, and prepare a presentation of their research findings in a typical presentation format used at a scientific meeting.

Pre-requisites: MPHP601 and MPHP602. Students will be expected to have introductory level knowledge of SPSS and a copy of this software.

MPHP660 Program Planning & Evaluation (3 Credit Hours). Period offered: fall. This course teaches students to systematically plan and evaluate public health interventions. Program planning is the organized design of a targeted intervention (i.e. the program) to meet a discrete health-related problem; evaluation is the examination of the utilization, delivery, and quality of that intervention. The purpose of this course is to equip students with the knowledge, strategies, and skills required to plan, implement, and evaluate health interventions and health promotion programs. This course provides the basic principles and processes associated with the planning and evaluation cycle: community needs assessment; program plan; evaluation framework; data collection plan to evaluate program outcomes; tools and strategies for collecting and analyzing program data; and disseminate program results.

Pre-requisites/Co-requisites: MPHP601 and MPHP604.

MPHP698 Applied Practice Experience (0 and 3 Credit Hours, may be split over multiple semesters). Periods offered: All. Applied Practice Experience course immerses students in the core domains of public health within the community under the guidance of a public health preceptor. The course is designed to provide students an opportunity to apply core public health skills learned in a classroom in a real world setting. This component of the MPH degree program plays a vital role in training students to assume public health
leadership positions. Students are automatically enrolled in the Applied Practice Experience during their first semester in the Master of Public Health Program. They will continue to be enrolled in the course for 0 credits until their final semester when they will receive 3 credits upon successful completion of their APE requirements. Students must work on their APE requirements throughout their time in the program.

Permission of instructor required.

Pre-requisites/Co-requisites: MPHP601, MPHP602, MPHP603, MPHP604, MPHP607, and MPHP660.

Data and Analytics
Concentration Courses

MPHP655 Advanced Epidemiology (2.5 Credit Hours). Period offered: spring. This course applies advanced principles and methods in epidemiologic research. The focus of this course is the design, conduct, analysis and interpretation of epidemiologic studies. Topics include determining causal inference, selection of an appropriate study design, sampling methodologies, data collection and measurement techniques, reliability and validity, selection of appropriate statistical tools, and evaluation of bias, confounding and effect modification.

Pre-requisites: MPHP601, MPHP602, and MPHP657.

MPHP661 Advanced Biostatistics (2.5 Credit Hours). Period offered: spring. This course focuses on applying general principles and methods of general linear modeling to the analysis of continuous and categorical data. Topics include simple and multiple linear regression, logistic regression, single and multi-factor analysis of variance (ANOVA), analysis of covariance (ANCOVA) and ANOVA for repeated measures. Knowledge of course content is applied to the development and completion of a research project. Project components include formulation of research questions and hypotheses, evaluation and selection of public-access or other available datasets for research, data cleaning and analysis using statistical software, and interpretation and presentation of results in graphic and oral formats.

Pre-requisite: MPHP602.

MPHP689 Advanced Qualitative Methods (2.5 Credit Hours). Period offered: fall. The purpose of this course is to help prepare MPH students with a qualitative skillset for both research and evaluation. Qualitative research focuses on the analysis of qualitative (e.g. open-ended interviews, focus groups, content analysis, community based participatory research) data. Instruction in data collection, thematic coding, interpretation and presentation of results is included. The course considers the complementary means by which qualitative and quantitative methods may be used towards a single research or evaluation goal. Students will use NVivo software.

Pre-requisite: MPHP657.

MPHP690 Advanced Quantitative Methods (2.5 Credit Hours). Period offered: fall. This course will apply advanced quantitative approaches commonly used in public health. Course topics will include data acquisition methods, analysis and dissemination of results. Students will conduct appropriate data analyses using publicly available data, interpret the results, prepare a research report using a peer-reviewed journal format and give an oral presentation of their research findings.

Pre-requisites: MPHP601, MPHP602, MPHP657 and MPHP691.

MPHP691 Advanced Analytical Software (2 Credit Hours). Period offered: spring. This course will introduce students to syntax-based statistical software programming (such as SAS, R, SPSS, or Stata) and qualitative data analysis software (such as NVivo). Topics will include advanced data management and manipulation techniques related to the customization of both tabular and graphic deliverable output; quantitative data visualization and modeling; and the coding, analysis, and visualization of qualitative data using analytic software.

Pre-requisites: MPHP601, MPHP602, and MPHP657.

Global Health and Translational Science
Concentration Courses

MPHP624 Introduction to Global Health (3 Credit Hours). Period offered: summer. Global health is the interdisciplinary approach to studying the health of populations across the world, irrespective of national or political boundaries. In the first half of the course students will learn about key stakeholders, priorities, and funders in the field; the Global Burden of Disease Study; comparative health systems; and the interplay between health, ethics, culture and social justice in international healthcare and research settings. In the latter half of the course students will explore important topics in global health (infectious disease, maternal & child health, nutrition, WaSH, non-communicable diseases, violence and mental health) as well environmental factors contributing to the sustainability and health of global populations. The course will end discussing opportunities and challenges faced by public health practitioners working in the field of global health to increase equity, access to healthcare, and ensure top health standards are met for populations globally and locally.

MPHP625 Research and Development for Global Health (3 Credit Hours). Period offered: spring. This course will allow students to understand the timeline and scope of developing solutions to global health problems. Students will learn how to deconstruct the problem, understand components and factors that contribute to the problem, and characterize populations who are impacted. Once the problem is identified, the course will progress stepwise through the research and development pathway to identify a research question, design a study and subsequent experiments to take place (in vivo vs. in vitro), regulatory and quality approval pathways, deployment of solutions and post marketing research. Each lecture will feature segments on real world successes and challenges in each stage of research and development. At the end of the course, students will be equipped with knowledge of how to design and execute a study to adequately address the problem through each segment of the translational science pathway (scope of the problem, discovery, pre-clinical development, Phase I-III, Production, and Delivery).
MPHP631 Pre-Departure Modules for International Experience (0.5 Credit Hours). Period offered: spring. For international experiences students are required to adhere to SUNY Upstate Medical University International Travel Policy which requires the student to complete a checklist of pre-departure training modules and required forms. The process is administered by the Institute for Global Health and Translational Science. This course allows students to complete all required documentation and training according to SUNY policy.

MPHP655 Advanced Epidemiology (2.5 Credit Hours). Period offered: spring. This course applies advanced principles and methods in epidemiologic research. The focus of this course is the design, conduct, analysis and interpretation of epidemiologic studies. Topics include determining causal inference, selection of an appropriate study design, sampling methodologies, data collection and measurement techniques, reliability and validity, selection of appropriate statistical tools, and evaluation of bias, confounding and effect modification.

Pre-requisites: MPHP601, MPHP602, and MPHP657.

Population Health for Clinicians Concentration Courses

MPHP649 Public Health and Biopsychosocial Primary Care (3 Credit Hours). Period offered: spring. This is a concentration course in the Population Health for Clinicians concentration. This course is intended for students with clinical interests or backgrounds, and covers the application of the Biopsychosocial Model of Care to primary care settings. In the process students apply population-level, public health skills to the management of individual patients or clients. The course includes discussion of cultural competency and humility, social determinants of health, health disparities, motivational interviewing and stages of change, the chronic care model, and stages-of-change theory. Students encounter a standardized patient who presents with a combination of newly-emergent chronic biological illness, co-morbid behavioral symptoms, and social stressors, in a formative session.

Permission of instructor required.

MPHP655 Advanced Epidemiology (2.5 Credit Hours). Period offered: spring. This is a concentration course in the Data and Analytics and Population Health for Clinicians concentration. This course applies advanced principles and methods in epidemiologic research. The focus of this course is the design, conduct, analysis and interpretation of epidemiologic studies. Topics include determining causal inference, selection of an appropriate study design, sampling methodologies, data collection and measurement techniques, reliability and validity, selection of appropriate statistical tools, and evaluation of bias, confounding and effect modification.

Pre-requisites: MPHP601, MPHP602, and MPHP657.

MPH Electives

MPHP626 Systematic Reviews. Period offered: Periodically. Scientific information is everywhere. With thousands of studies being published and disseminated across the world on a daily basis, it is difficult for public health professionals to keep track of all the best available evidence in our field. Systematic review is a technique used to address this problem by offering a standardized framework to synthesize and assess the quality of the literature on a specific research topic. Systematic reviews can provide insight on which interventions, programs, and policies are the most effective to address diverse health and social welfare problems among our patients and the public. Systematic reviews also enable us to learn about the gaps in knowledge and limitations in existing literature to guide future public health practice, research, and policy. This course covers the entire range of conducting a systematic review such as framing a review question, implementing a search strategy, and synthesizing data extracted from eligible studies. The end of the semester will also introduce concepts and software to implement a meta-analysis.

MPHP627 Public Health Ethics (3 Credit Hours). Periods offered: fall and spring (Periodically). This course addresses ethical issues in public health. Public health ethics is a new area of scholarship and practice that addresses population level health issues, including issues such as food stamps and health insurance, immunizations, public health research, legal and policy responses to infectious diseases and epidemics, and the role of religious and social values in setting health policy.

MPHP628 Service Learning and Community Health (2 Credit Hours). Periods offered: fall and spring (Periodically). This elective introduces basic principles of community health from the perspective of viable community organizations invested in promoting health and wellness. As Upstate students you will be providing a valuable service to the community while learning from and about the community. The format of the course is highly interactive, allowing students to learn about their role as future health care professionals and their impact on the health of the community. This course has two components: 1) In-Class Sessions: Students will be required to attend, participate in, and critically reflect on the learning activity as it relates to community health issues. Sessions will be held each month for (2) hours each for a total of (16) contact hours; the first hour will typically consist of a lecture; the second hour will include small group work and discussion; 2) Planned Service Activities: Students will engage in a minimum (64) hours of planned service activities which is integrally related to the academic subject matter of the course.

MPHP629 Refugee Health in Our Community – A Service Learning Experience (3 Credit Hours). Periods offered: fall and spring (Periodically). This course provides a unique opportunity to be paired with a newly resettled refugee family in Syracuse, partner with community agencies and engage with students across disciplines (medicine, public health, social work). Students will have classroom and community experiences that allow them to better understand medical, social and cultural issues that impact the health of the local refugee population we serve. These partnerships will inevitably provide the opportunity for advocacy on behalf of a vulnerable population we all strive to support.

Must receive permission from the course instructor.
MPHP647 Research and Writing for Public Health (3 Credit Hours). Periods offered: all. Students will learn several aspects of writing for research, including the identification of a research question and appropriate methodology, conducting and writing a focused literature review (or Introduction/Background section of a paper), documenting a methodological approach, running and writing an analysis, and interpreting results in a discussion/conclusion section.

MPHP648 Culture, Communication & Ethics in Healthcare: Deaf & Disability Studies Approaches (3 Credit Hours). Periods offered: fall and spring (Periodically). Ethical, empathic, and effective health care involves good communication, reflection, and social and cultural knowledge and skills. This course provides a model for collaborative and culturally sensitive and skilled communication in health care. Through the study of ethics cases, narratives, and literature, students will analyze disparities and discrimination in health care for people who are deaf and disabled. Students will explore solutions through deaf studies, disability studies, and narrative approaches to bioethics and health care. Guest speakers will include members of the Deaf community, disability studies scholars and advocates, sign language interpreters, and health care professionals. A team of Community Educators will meet with students four times throughout the semester, as experts and educators who will engage the students through interviews, communicating findings and getting feedback, and then a presentation and review.

MPHP652 Infectious Disease Epidemiology (3 Credit Hours). Period offered: fall and spring (Periodically). Infectious diseases have historically and are currently a cause of considerable morbidity and mortality in both the developing and developed world. We have come to appreciate the role of developing countries in providing the environment for infectious diseases to emerge and the proximity of the global community and its vulnerability for global pandemics. Infectious disease epidemiology is the study of the causes, distribution, and control of infectious diseases in a population. This course will explore the epidemiology of globally important infectious diseases and will cover basic epidemiologic methods, pathogenesis of selected infectious diseases, and case-studies on performing outbreak investigations and developing population studies to understand the spread, transmission and prevention of infectious diseases. Particular emphasis will be placed on understanding laboratory techniques for the identification and quantification of infectious agents and its use during outbreak investigations. This course is designed to provide an introduction to infectious disease epidemiology and will focus on the tools of basic epidemiology in identifying, preventing and controlling infectious disease problems.

Pre-requisite: MPHP601, MPHP602, and MPHP657.

MPHP653 Chronic Disease Epidemiology (3 Credit Hours). Period offered: Periodically. This course will apply the methods and principles of epidemiology and biostatistics to the study of chronic diseases in the US and elsewhere. Diseases of interest include: cancer, cardiovascular disease, asthma and allergy, obesity/diabetes/metabolic syndrome, and musculoskeletal disorders. Theories regarding the development of chronic disease will be discussed as will specific mechanisms for individual disease development (pathology, biology, social, economic, political). The burden of specific diseases (prevalence, incidence, distribution by population characteristics) as well as risk and protective factors will be highlighted along with preventive strategies. Methodological issues in the study of chronic diseases also will be discussed.

Pre-requisites: MPHP601 and MPHP602.

MPHP 654 Grant Writing in Public Health (3 Credit Hours). Period offered: Periodically. This course is a hands-on course in how to prepare large research and program grant proposals. The course will cover related topical areas, with an emphasis upon research and evaluation methods, and will also include grant administration (rules, overhead etc.), funding source identification and relationship building, the role of the literature review, IRB and other regulatory issues, peer review and funding decisions, and research “culture.” Students who have specific funding opportunities they would like to pursue can use this course to create a draft of this proposal. Students will be familiar with the planning, writing, and managing requests for funding in a research context, and how to manage research projects once funded. The main work product of this course will be the draft of a major proposal, including a background section and review of the relevant scholarly literature, a detailed description of program or intervention (as appropriate), a detailed description of the methods to be used in conducting the research project or program evaluation, and a budget and narrative budget justification. It is highly advisable that incoming students have a project in mind for development into a funding proposal.

Pre-requisites: Students should have taken at least one prior course in Research Methods, Program Evaluation, or Statistics (e.g. MPHP 602, MPHP 657, MPHP 660, MPHP 661, or equivalent), or obtain instructor approval before enrolling.

MPHP658 Economics for Public Health Practitioners (3 Credit Hours). Period offered: Periodically. This course is an introductory health economics course aimed at public health practitioners. Prior economics coursework is not required. The course will provide the student with a broad foundation in the supply of health care, provider remuneration, financing of health services, managed care, health care spending and global comparisons of health care expenditures. The class will provide an understanding of the concepts and practical applications of cost-benefit and cost-effectiveness analyses. Economic concepts will be examined through public health examples.

MPHP688 Principles of GIS for Public Health (3 Credit Hours). Period offered: Periodically. This course is designed to introduce the basic principles and methods of GIS and enable the student to apply these skills and knowledge to investigate public health problems. It is a time-sensitive
hybrid course that incorporates independent study using on-line modules and in-class discussions of GIS-related articles from the literature. The final project is designed to integrate and apply skills learned throughout the semester and includes presentations of methods and findings in a variety of formats. Pre-requisite: MPH602. Access to a PC with Windows OS and ArcGIS software. ArcGIS software does not run on a MacIntosh operating system!

MPHP697 MPH Independent Study (1-3 Credit Hours). This elective is intended to offer students an opportunity to gain research or experiential learning outside the classroom in an area of interest where no formal course work is available or in an area where they have already completed one or more formal courses. There is no set curriculum; however, each student elective must be approved by the student’s advisor and the Chair of the Upstate MPH Curriculum Committee prior to enrollment. Students must submit a proposal for their planned project/research project outlining site of planned project, supervisor, subject matter to be studied, possible product to be produced (paper, presentation, pamphlet, etc.) and timeline for completion.

Public Health General Education Electives

PHGE401 Upstate Accelerated Scholars (UAS) Summer 1: Critical Thinking and Written Communication (1 Credit). The intent of this 4-part summer course will be to provide support, community engagement, and development of the AAMC Competencies to all UAS students across four summer courses – three undergraduate-level courses and a final summer for College of Medicine Elective Credit. Upstate Summer 1 aims to develop UAS students’ critical thinking and written communication competencies through 8 weeks of online, asynchronous learning.

PHGE402 Upstate Accelerated Scholars (UAS) Summer 2: Teamwork and Cultural Competency (1 Credit). The intent of this 4-part summer course will be to provide support, community engagement, and development of the AAMC Competencies to all UAS students across four summer courses – three undergraduate-level courses and a final summer for College of Medicine Elective Credit. Upstate Summer 2 aims to develop UAS students’ teamwork and cultural competencies through 8 weeks of online, asynchronous learning with the option of one week on-campus programming.

PHGE601 Introduction to Lean-Systems in Healthcare (Module #1) (1 Credit Hour). Period offered: Periodically. Module 1 will introduce the concepts and components of Lean-Systems Thinking with respect to identifying "Waste" and "Variation" associated with the service delivery system in healthcare. "Lean is built upon the concepts of Six Sigma and Continuous Quality Improvement, enabling an Organization to create and sustain an environment where the employees are directly involved with the re-designing of healthcare systems to achieve quality outcomes and patient satisfaction.

PHGE602 Application of Lean Management (Module #2) (1 Credit Hour). Period offered: Periodically. Participants will apply Lean Management techniques to a patient care system. During Sessions 1 and 2, Rapid Process Improvement Workshops (RPIWs) will be conducted on each system that the participants have identified for improvement.

Pre-Reqs: Successful completion of Module 1

PHGE603 Lean Management and Leadership in Healthcare (Module #3) (1 Credit Hour). Period offered: Periodically. Participants will learn about effective leadership techniques in the Healthcare industry and explore the role of Lean Management in leadership development.

PHGE632 Leadership and Lean Thinking in Healthcare Organizations (3 Credits). The intent of this course will be to provide students with the opportunity to explore and develop a leadership approach toward building/improving and sustaining an effective healthcare organization. Students will apply concepts from Public Health and Lean Thinking toward systems re-design for Quality Patient care Outcomes, Patient Satisfaction, Employee Engagement, and Organizational Efficiency in a healthcare setting.
The College of Nursing Section is currently under revision and should be available by October 10, 2022.