

The Office of Research for Medical Students

Summer 2020 Research Analysis and Statistics Presentation with:

Christopher P. Morley PhD Chair, Department of Public Health & Preventive Medicine

> July 30, 2020 1PM Webinar

Public Health A QUICK INTRODUCTION TO BASIC STATISTICAL TESTS

Christopher P. Morley PhD Chair, Department of Public Health & Preventive Medicine

- Quick overview of variable types
- How Variable types are measured
- Review of for BASIC but COMMON inferential statistical tests
 - Pearson Correlation
 - ► T-Test
 - ► ANOVA
 - ► "Chi-squared" (χ²)
- SPSS Statistical Package for the Social Sciences

VARIABLE DEFINITION

Your research question(s) should inherently imply your analytic approach, variables etc.

See:

https://cirt.gcu.edu/research/developmentresources/tutorials/question

VARIABLE TYPES

- <u>Continuous</u> -
 - Interval measurable in a continuum
 - <u>Ratio</u> like an interval, but interval contains 0, and 0 implies "none"
- <u>Categorical</u> numbers describe categories
 - <u>Nominal</u> no implied order (e.g. AA/Asian/White/AIAN etc.)
 - <u>Dichotomous</u> a type of nominal that implies only two states (e.g. Female/Male)
 - A "Dummy Variable" is dichotomized into 1 and 0, with presence or absence of a state implied
 - Ordinal there is an implied ranking in the order, but the relationship between ranks is not a ratio (e.g. Likert Scale)

VARIABLE TYPES, CONTINUED

- <u>Nominal by Nominal</u> (e.g. Treatment yes/no by Cure yes/no)
 - "Chi-squared" χ²
 - Fisher's Exact Test (when sample or categories are very small)

<u>Continuous by Nominal</u>

- T-Test Comparing mean of two groups
- Analysis of Variance comparing means across more that two groups
- Ordinal can be treated like a continuous variable in many cases (and we often do! Think of Likert Scales on surveys)

<u>Continuous by Continuous</u>

- Correlation Tests the extent to which one variable changes with another
- Pearson best for linear relationships
- Spearman better for ordinal or non-linear relationships

TODAY'S DEMONSTRATION

- <u>Continuous by Continuous</u> Pearson Correlation
- <u>Continuous by Nominal</u>
 - T-Test Comparing mean of two groups
 - Analysis of Variance comparing means across more that two groups
- Nominal by Nominal "Chi-square" χ²

FIRST – THE DATA

SPSS

- ► We will be using SPSS available on all (most?) Upstate computers.
- ► There are also student annual licenses available.
- GUI-driven, but can also run on code.
- https://www.ibm.com/us-en/marketplace/spss-statistics-gradpack/details#product-header-top

Data Set

- From Biostatistics: An Applied Introduction for the Public Health Practitioner | 1st Edition | Heather M. Bush
- https://www.cengage.com/c/biostatistics-an-applied-introduction-for-the-public-healthpractitioner-1e-bush/978111035143/
- 995 pregnant women from a large farming community
- See write-up and data set

TODAY'S DEMONSTRATION

<u>Continuous by Continuous</u> - Pearson Correlation

A Pearson correlation is a number between -1 and 1 that indicates the extent to which two variables are linearly related. The Pearson correlation is also known as the "product moment correlation coefficient" (PMCC) or simply "correlation".

Pearson correlations are suitable only for <u>metric variables</u> (which include <u>dichotomous variables</u>).
For <u>ordinal variables</u>, use the Spearman correlation or Kendall's tau and
for <u>nominal variables</u>, use <u>Cramér's V</u>.

From: https://www.spss-tutorials.com/pearson-correlation-coefficient/

Public Health

PEARSON CORRELATION

<u>Continuous by Continuous</u> - Pearson Correlation

te AtrzineH	igb (CPM.sav (DataSet1) - IBM	SPSS Statistics Data Editor										
<u>File</u> dil	View Data Dansform	Analyze <u>O</u> raphs <u>Utilities</u> Egter	ncions	Window Help								
1	🚔 🎩 🗠 🗠	Regords	*	- La 🕗 💌								
		Descriptive Statistics	,									lisible. 15 of 15 Variables
	ຈໍານ ຈໍ	Bayesian Statistics		renatal 🕹 psmo	due.	🥖 age	🥖 wigain	al parity	died.	/ change	✓ hgb36	Income
1	1	Lables		rrenatal 🗼 psmo 0	1	20 age	42.3	all party	2	 change 2.85 	✓ ngb30 0.89	2.1/6
2	2	Compare Means		0	0	23	41.5	0	2	2.30	(.70	2.20/
3	3	General Linear Model		1	1	24	33.0	1	2	2.81	7.01	2.20/
4	4	Ceneralized Linear Models		1	0	26	38.9	2	2	2.85	8.43	2.215
5	5	Word Models			_ 0	28	39.2	3	2	3.19	7.49	2.226
Ü		<u>C</u> orrelate	*	🔚 <u>B</u> ivariate	0	25	37.1	1	2	3.08	10.08	2.230
1	(Regression		🌆 Parhal	0	31	53.4	2	2	3.21	7.29	2.231
8	8	Lgginear	۴	Distances	0	22	32.3	2	2	3.22	8.29	2.236
9	9	Neural Networks		E Canonical Correlation	1	21	30.0	1	2	3.64	0.04	2.242
10	10	Classity		1	0	25	40.1	3	2	3.24	7.19	2.246
11	11	Dimension Reduction		1	1	25	39.8	2	0	3.64	7.46	2.257
12	12	Scale	۴	1	1	20	43.9	2	0	4.36	6.09	2.2/6
13	13	Nonparametric Lests		0	0	21	30.1	1	0	3.2/	7.53	2.282
14	14	Forecasting	۴	0	0	24	32.9	1	0	3.59	7.07	2.29/
15	10	Survival		1	1	22	40.3	2	0	3.63	7.09	2.298
16	10	Ngliple Response		U	0	24	27.2	1	0	3.08	1.75	2.298
1/	17	🔛 Wissing Value Analysis		1	0	25	50.8	2	0	3.36	6.16	2.309
18	18	Nuljple Imputation		0	0	25	41.6	0	0	3.61	7.20	2.310
19	19	Complex Samples	,	1	0	24	32.9	1	0	3.09	6.97	2.322
20	20	📅 Simulation		0	0	25	36.7	2	0	3.88	7.79	2.329
21	21	Quality Control		0	1	24	28.6	1	0	3.68	7.89	2.364
22	22	ROG Curve		1	0	25	43.2	2	0	4.23	7.32	2.368
23	23	Spatial and Temporal Modeling		1	1	23	43.7	1	0	3.21	7.(1	2.377
24	24	Direct Marketing		0	0	25	43.4	1	0	3.19	7.33	2.380
25	25	Direct Margeting		0	1	25	45.6	2	0	3.74	8.67	2.380
26	26	1 11.37		0	0	25	43.1	2	0	3.91	7.43	2.386
2/	27	1 10.86		0	0	24	24.5	2	0	3.89	6.97	2.38/
28	28	1 11.10		0	0	25	40.7	1	0	4.28	6.82	2.389
29	29	1 11.02		1	0	24	40.9	2	U	3.89	7.13	2.390
30	30	1 10.08		U	0	24	36.4	0	0	3.70	6.38	2.397
	3		1.00									N
Data View	Variable View											
Byanate									IBM SPS	S Statistics Processor is rea	dy Unicod	e'ON

PEARSON CORRELATION

College Of Medicine

Public Health

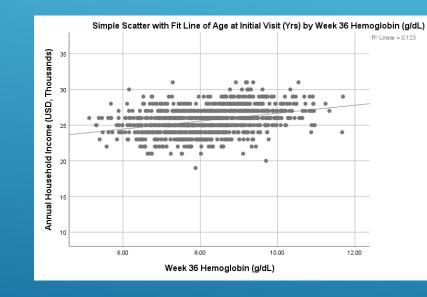
<u>Continuous by Continuous</u> - Pearson Correlation

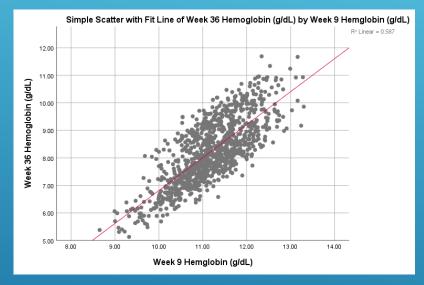
					Annual Household		
		Week 9 Hemglobin	Week 36	Age at Initial Visit	Income (USD,	Number of previous	Educational
		(g/dL)	Hemoglobin (g/dL)	(Yrs)	Thousands)	births	Attainment
Week 9 Hemglobin	Pearson Correlation	1	.766**	.076*	.012	.015	.083**
(g/dL)	Sig. (2-tailed)		.000	.017	.708	.641	.010
	Ν	979	979	979	975	979	979
Week 36 Hemoglobin	Pearson Correlation	.766**	1	.351**	.078*	143**	.340**
(g/dL)	Sig. (2-tailed)	.000		.000	.015	.000	.000
	Ν	979	979	979	975	979	979
Age at Initial Visit (Yrs)	Pearson Correlation	.076*	.351**	1	.083**	052	.162**
	Sig. (2-tailed)	.017	.000		.010	.105	.000
	Ν	979	979	979	975	979	979
Annual Household	Pearson Correlation	.012	.078*	.083**	1	043	.273**
Income (USD,	Sig. (2-tailed)	.708	.015	.010		.179	.000
Thousands)	Ν	975	975	975	975	975	975
Number of previous	Pearson Correlation	.015	143**	052	043	1	038
births	Sig. (2-tailed)	.641	.000	.105	.179		.241
	Ν	979	979	979	975	979	979
Educational	Pearson Correlation	.083**	.340**	.162**	.273**	038	1
Attainment	Sig. (2-tailed)	.010	.000	.000	.000	.241	
	Ν	979	979	979	975	979	979

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

PEARSON CORRELATION


• Continuous by Continuous - Pearson Correlation (What does this LOOK like, graphically?)


r =.012, p=.708

Simple Scatter with Fit Line of Age at Initial Visit (Yrs) by Week 9 Hemglobin (g/dL) R² Linear = 0.005 R² L

r =.078, p<.015

r =.766, p<.001

College Of Medicine

COMPARISON OF MEANS – T-TEST

Public Health

- <u>Continuous by Nominal</u>
 - T-Test Comparing Hemoglobin at week 36 across pre-pregnancy smoking status
 - So your two groups have different means. Are they REALLY different, or simply different by chance?

		Reportion Statistics											National Indiana Sec.
	80 8	Tables		1 1000	M 40.2	emoke	/ app	If stpain 42.3	dipatity	det 2	# change 2.85	# hgb08 6.40	4 repro
	2	Copport Means		1 E 10-			30	42.5	9	2	2.30	2.13	1:
	1	promitions their	6	1 100	e-Servels T Tes		34	50.0			2.84	2.51	23
-	-	Generalized Linear M	6.66	1 1000	and the second	ter Ther	20	28.9	2		2.04	- 2.23 1.42	1:
-		Right Modely		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A		best-Stampton F. T		592	0		3.19	2.48	21
	2	Develop			ind Respire T		30	30.1			3.05	10.00	2.2
		BIOTERON				100		53.4	2		0.21	7.20	2.7
-		Lopineer		, 1 800	e Was (HOW).		37	32.3	2	2	3.23	1.0	23
-		Securi Hetapote					20	50.0		2	0.64	6.64	23
	10	Garrig					20	40.1	2		3.24	2.18	2.
	10	Densination Postantia					25	59.8	2		0.64	2.18	2.2
	10	Scale				-	20	43.8	2		0.04	5.49	2.1
	10	Sorperursette Text			0		20	50.1			0.21	2.53	23
	10	Farmaning			0	-	20	32.5			2.59	2.00	21
	18	Burning					22	40.3	2		0.65	2.58	2.2
	10	Nulleis Response			9		38	47.5			3.05	2.00	21
	0				1		25	50.8	2		0.36	6.15	2.5
	20	Manky/ske Analys			0		20	41.6	2		2.81	2.20	20
	10	Bulliple Projubilition		-	1	-	34	52.9			0.99	6.97	20
-	20	Complex Samples			0		- 25	36.2	7		2.55	2.13	23
	21	Consister_			0	-	24	25.6			0.56	7.60	2.1
	22	Questo Control			1	-	25	43.2	2		1.23	2.32	23
	23	C PIOC Durye			1		20	452			0.21	2.71	21
	24	Spatial and Tempore	A Madeling		0		20	42.4			2.79	2.03	200 200
	8	Dentilitatyring			0		- 25	45.6	2		0.74	8.67	20
	26		11.27		0		25	431	2		2.94	2.42	23
	22		10.85		0		34	245	2	-	0.89	1.97	21
	20		11.10		0	-	25	49.2	1		6.25	6.82	
-	3		11.12		1		34	40.5	2	-	0.89	2.13	21
			10.00		0	-	35	20.4	0		3.70	8.20	23
			107 100		~		100					10 10	

COMPARISON OF MEANS – T-TEST

- Public Health
- <u>Continuous by Nominal</u>
 - T-Test Comparing Hemoglobin at week 36 across pre-pregnancy smoking status
 - So your two groups have different means. Are they REALLY different, or simply different by chance?

	Grou	up Statistic	S		
	Pre-Pregnancy			Std.	Std. Error
	Smoker	Ν	Mean	Deviation	Mean
Week 36 Hemoglobin	No	741	8.3524	1.16342	.04274
(g/dL)	Yes	238	7.8314	1.09255	.07082

				Indeper	ident Samples	Test				
		Levene's Test of Varia					t-test for Equality of M	leans		
	F	C		-16	Sig.	Mean	Std. Error	95% Confide		
Week 36 Hemoglobin (g/dL)	Equal variances assumed	F .751	Sig. .386	6.098	df 977	(2-tailed) .000	Difference .52095	Difference .08543	Lower .35330	Upper .68860
	Equal variances not assumed			6.298	423.097	.000	.52095	.08272	.35836	.68353

COMPARISON OF MEANS - ANOVA

Public Health

<u>Continuous by Nominal - Analysis of Variance – comparing means across more that two groups</u> •

	🔒 🎩 🗠 🛥	Descriptive Statistics	· -	14 📀 💽								Visible, 15 of 15 Va
	ຈໍາບ 💰	Bayesian Statistics Tables	, iren	stal 🔹 🕹 psmoke	🥖 🧳 age		🖉 wigein	🕼 parity	be I L	f change	🛷 hgb36	/ Income
1	1	Compare Means	* 131 A	eans		26	42.3	1	2	2.85	0.89	
!	2	General Linear Model	00223 NOVA	ne-Sample Lest		23	41.5	0	2	2.30	1.70	
	3	Ceneralized Linear Models	(1993) (TTO)	idependent Samples T Te		24	33.0	1	2	2.84	7.51	
	1	Mixed Models		example end only page	002010310310300000	20	38.9	2	2	2.85	8.43	
	5	Conelate		iummary independent-San	nples I Test	28	39.2	3	2	3.19	7.49	
	Ű	Regression	, 111	ared Samples T Test		25	37.1	1	2	3.08	10.08	
	(Lgginear	, D	Diro-Way ANOVA	and the second second	31	53.4	2	2	3.21	7.29	
	8	Neural Networks	.]	1	0	22	32.3	2	2	3.22	8.29	
083	9			1	1	21	30.0	1	2	3.64	0.04	
)	10	Classify		1	0	25	40.1	3	2	3.24	7.19	
	11	Dimension Reduction	· · · · ·	1	1	25	39.8	2	0	3.64	7.46	
2	12	Scale		1	1	26	43.9	2	0	4.36	5.09	
	13	Nonparametric Lests	1	0	0	21	30.1	1	0	3.2/	7.63	
1	14	Forecasting	·	0	0	24	32,9	1	0	3.69	7.07	
2	16	Survival	×	1	1	22	40.3	2	0	3.63	7.59	
j	10	Multiple Response	*	0	0	24	27.2	1	0	3.08	1.75	
K (1)	17	🔛 Missing Value Analysis		1	0	25	50.8	2	0	3.36	6.16	2.3
1	18	Multiple Imputation	• · · · ·	0	0	25	41.6	0	0	3.61	7.20	2.3
2	19	Complex Samples	э.	1	0	24	32.9	1	0	3.59	6.97	2.3
)	20	📅 Simulation		0	0	25	36.7	2	0	3.88	1.79	2.3
	21	Quality Control		0	1	24	28.6	1	0	3.68	7.89	
2	22	ROG Curve		1	0	25	43.2	2	0	4.23	7.32	
1	23	Spatial and Lemporal Modeling		1	1	23	43.7	1	0	3.21	7.71	2.3
	24	Direct Margeting		0	0	25	43.4	1	0	3.19	7.33	2.3
2	25	Direct Margering		0	1	25	45.6	2	0	3.74	8.67	2.3
	20	1 11.37		U	0	25	43.1	2	0	3.94	7.43	2.3
	27	1 10.86		D	0	24	24.5	2	0	3.89	6.97	2.3
	28	1 11.10		0	0	25	40.7	1	0	4.28	6.82	2.3
	29	1 11.02		1	0	24	40.9	2	0	3.89	7.13	2.3
	30	1 10.08		U	0	24	36.4	U	0	3.70	0.38	2.3

MEDICAL UNIVERSITY College OF MEDICINE

COMPARISON OF MEANS - ANOVA

Public Health

• <u>Continuous by Nominal - Analysis of Variance – comparing means across more that two groups</u>

			Desc	riptives										
Week 36 Hemoglobin	eek 36 Hemoglobin (g/dL)										ΔΝΙ	OVA		
					95% Confide				Week 36 H	emoglobin (g				
					for N					Sum of		Mean		
			Std.	Std.	Lower	Upper				Squares	df	Square	F	Sig.
	Ν	Mean	Deviation	Error	Bound	Bound	Min	Max	Between	707.887	2	353.943	552.247	.000
Tap Water Only	270	7.2596	.85532	.05205	7.1571	7.3620	5.31	10.08	Groups					
Bottled/Filtered	315	9.3904	.75322	.04244	9.3069	9.4739	7.09	11.69	Within	625.533	976	.641		
Water Only									Groups					
Combination of Tab	394	7.9566	.79853	.04023	7.8776	8.0357	5.13	9.86	Total	1333.420	978			
and Bottled/Filtered														
Total	tal 979 8.2257 1.16765 .03732 8.1525 8.2990							11.69						
					Post Hoc Tests	Multiple Compari	sons - Tukey H	ISD						

	Post Hoc Tes	sts Multiple Comp	arisons - Tukey	y HSD		
Dependent Variable: Week 36 Hem	oglobin (g/dL)					
					95% Confide	nce Interval
(I) Water Consumption Group	(J) Water Consumption Group	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tap Water Only	Bottled/Filtered Water Only	-2.13089*	.06640	.000	-2.2867	-1.9750
	Combination of Tab and	69709*	.06325	.000	8456	5486
	Bottled/Filtered					
Bottled/Filtered Water Only	Tap Water Only	2.13089*	.06640	.000	1.9750	2.2867
	Combination of Tab and	1.43379*	.06051	.000	1.2918	1.5758
	Bottled/Filtered					
Combination of Tab and	Tap Water Only	.69709*	.06325	.000	.5486	.8456
Bottled/Filtered	Bottled/Filtered Water Only	-1.43379*	.06051	.000	-1.5758	-1.2918
*. The mean difference is significant	at the 0.05 level.					

Public Health

TODAY'S DEMONSTRATION

<u>Nominal by Nominal</u> - "Chi-square" χ²

Atrznełł	gb (12M.sav (DataSet1) - IBM	SPSS Statistics Data Editor						and the second						_ 🗆 🗾 📈
<u> Edil</u>	View Data Transform	<u>Analyze G</u> raphs <u>U</u> tilities Egter	sions	<u>W</u> indow ∐elp										
(in 191	🚔 🛄 🗠 🗠	Regords		. 🗄 🙆 😱										
_		Descriptive Statistics		E Frequencies										
		Bayesian Statistics	- F-	Descriptives		_				_				Visible, 15 of 15 Variables
	ຈີຍ 🕹 🖗	Lables		-A Explore	moke		🛷 age	🛷 wtgain	al parity		de 🛍	🥙 change	🖉 hgb36	🗸 income
1	1	Compare Means	- K	Crosstabs		1	26	42.3		1	2	2.85	6.89	
2	2	General Linear Model		TURE Analysis		0	23	41.5		0	2	2.30	7.70	
3	3	Ceneralized Linear Models	- M -			1	24	33.0		1	2	2.84	7.51	
4	4	Mixed Models		w Ratio		0	26	38.9		2	2	2.85	8.43	
5	5	<u>C</u> orrelate		P-P Plots		0	28	39.2		3	2	3.19	7.49	
6	6	Regression		🚰 🖸 Q Plots		0	25	37.1		1	-	3.08	10.08	
1	1	Loglinear				0	31	53.4		2	2	3.21	7.29	
8	8	Neural Networks		1		0	22	32.3		2	2	3.22	8.29	
9	9	Classify		1		1	21	30.0		1		3.64	6.64	
10	10	Dimension Reduction		1		0	25	40.1		3	2	3.24	7.19	
11	11	Scale		1		1	25	39.8		2	0	3.64	7.46	
12	12	Nonparametric Lests		1		1	26	43.9		2	0	4.36	5.09	
13	13	Forecasting		0		0	21	30.1		1	-	3.2/	7.53	
11	14	Survival		0		0	24	32.9		·	0	3.59	7.07	
15	15	Myliple Response		1		1	22	40.3		2	0	3.63	7.09	
16	16		· ·	0		0		27.2		·	0	3.08	1.75	
1/		🔛 Missing Value Analysis		1		0	25	50.8		2	0	3.36	6.16	
18	18	Multiple Imputation		1		0	25	41.6		0	0	3.61	7.20	
19	19	Complex Samples	'			0	24	32.9		1	0	3.09	6.97	
20	20	📅 Simulation		0		0	25	36.7		2	0	3.88	7.79	
21	21	Quality Control	· •	0		1	24	28.6		1	0	3.58	7.89	
22	22	ROG Curve		1		0	25	43.2		2	0	4.23	7.32	
23	23	Spatial and Temporal Modeling		1		1	23	43.7		·	0	3.21	1./1	
24 25	24	Direct Marketing	- F -	0		0	25	43.4		1	0	3.19	7.33	
	25 26	4 44.97		0		1	25 25	45.6 43.1		2	0	3.74 3.94	8.67	
26	20	1 11.37		0		0	20	43.1 24.5		2	0	3.91	0.97	
2/	27	1 10.80		•		0	24	24.5		2	0	4.28	6.82	
28				0		0				·	0	3.89		
29 30	29 30	1 11.02				0	24	40.9 36.4		2	0	3.89	7.13	
30	30	1 10.08		0		0	21	30.4		0	0	3.70	6.38	2.39/
								***						r
Data View	Variable View													
Crosstabs											IBM SPS	S Statistics Processor is re-	ady Unic	ode:ON
					1.1	_				_				

12-10 PM

TODAY'S DEMONSTRATION

- Nominal by Nominal "Chi-square" χ^2
 - Comparison of proportions across categories
 - Best used in 2 x 2, as that is easiest to interpret

		Crosstab			
			Pre-Pregnar	ncy Smoker	
			No	Yes	Total
Tap Water Only	.00	Count	558	151	709
		% within Tap Water Only	78.7%	21.3%	100.0%
	1.00	Count	183	87	270
		% within Tap Water Only	67.8%	32.2%	100.0%
Total		Count	741	238	979
		% within Tap Water Only	75.7%	24.3%	100.0%

	Chi-Squa	re Te	ests							
			Asymptotic							
			Significance	Exact Sig.	Exact Sig.					
	Value	df	(2-sided)	(2-sided)	(1-sided)					
Pearson Chi-Square	12.683ª	1	.000							
Continuity Correction ^b	12.096	1	.001							
Likelihood Ratio	12.219	1	.000							
Fisher's Exact Test				.000	.000					
Linear-by-Linear Association	12.670	1	.000							
N of Valid Cases	979									
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 65.64.										
b. Computed only for a 2x2 table										

FOR DEEPER STUDY

SPSS Tutorials" site here: <u>https://www.spss-tutorials.com/</u>

- I can't really vouch for what it is or who runs it (some ads are blocked by McAfee). As an intro to SPSS, it's a place to start. I would recommend people can open the lessons (anywhere it says "Read"), but be careful about opening any links. I would ONLY click on the links that lead to the lessons NOTHING that looks like an advertisement or a link off the site. A few pointers:
 - Types of variables
 - -- How to set up a raw data table for analysis
 - -- A hypothesis (significance) test
 - -- Correlations (mostly Pearson)
 - T-test (learn the z-test if you must, but the t-test is far more widely used)
 - -- Analysis of Variance (ANOVA) basically an extension of the t-test
 - -- Chi square for analyzing categorical by categorical variables
- Those feeling adventurous can start looking at regression, but most learners can get to poster stage if they can run, interpret, and explain the variables above

FOR DEEPER STUDY

Khan Academy:

- https://www.khanacademy.org/math/statistics-probability
- A free online statistics course

Statistical Solutions Inc:

- <u>https://www.statisticssolutions.com/directory-of-statistical-analyses/</u>
- Designed to offer dissertation consultation, but lots of free and VERY straightforward directions

Social Research Methods:

- <u>http://socialresearchmethods.</u>
- Not statistics, but a great guide for study design, foundations of research methods, etc.

FINAL TIPS

- Partner with people who complement your skills
- If funding available: consult with the Center for Research & Evaluation (CRE)
 - <u>http://www.upstate.edu/publichealth/research/cre/index.php</u>
 - Please be aware there are charges (\$110/hr after consultation)
 speak w/ faculty about funding