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Abstract, Costameres, the vinculin-rich, sub-mem- 
branous transverse ribs found in many skeletal and 
cardiac muscle cells (Pardo, J. V., J. D. Siciliano, 
and S, W, Craig. 1983. Proc. Natl. Acad. Sci. USA. 
80:363-367.) are thought to anchor the Z-lines of the 
myofibrils to the sarcolemma. In addition, it has been 
postulated that costameres provide mechanical linkage 
between the cells' internal contractile machinery and 
the extracellular matrix, but direct evidence for this 
supposition has been lacking. By combining the flexi- 
ble silicone rubber substratum technique (Harris, 
A. K., P. Wild, and D. Stopak. 1980. Science (Wash. 
DC). 208:177-179.) with the microinjection of fluo- 
rescently labeled vinculin and oL-actinin, we have been 
able to correlate the distribution of costameres in 
adult rat cardiac myocytes with the pattern of forces 
these cells exert on the flexible substratum. In addi- 
tion, we used interference reflection microscopy to 
identify areas of the cells which are in close contact 
to the underlying substratum. Our results indicate 
that, in older cell cultures, costameres can transmit 
forces to the extracellular environment. We base this 
conclusion on the following observations: (a) adult rat 
heart cells, cultured on the silicone rubber substratum 
for 8 or more days, produce pleat-like wrinkles during 

contraction, which diminish or disappear during relax- 
ation; (b) the pleat-like wrinkles form between adja- 
cent alpha-actinin-positive Z-lines; (c) the presence of 
pleat-like wrinkles is always associated with a peri- 
odic, "costameric" distribution of vinculin in the areas 
where the pleats form; and (d) a banded or periodic 
pattern of dark gray or close contacts (as determined 
by interference reflection microscopy) has been ob- 
served in many cells which have been in culture for 
eight or more days, and these close contacts contain 
vinculin. A surprising finding is that vinculin can be 
found in a costameric pattern in cells which are con- 
tracting, but not producing pleat-like wrinkles in the 
substratum. This suggests that additional proteins or 
posttranslational modifications of known costamere 
proteins are necessary to form a continuous linkage 
between the myofibrils and the extracellular matrix. 
These results confirm the hypothesis that costameres 
mechanically link the myofibrils to the extracellular 
matrix. We put forth the hypothesis that costarneres 
are composite structures, made up of many protein 
components; some of these components function pri- 
marily to anchor myofibrils to the sarcolemma, while 
others form transmembrane linkages to the extracellu- 
lar matrix. 

C 
OSTAMERES are vinculin-containing, electron-dense 
plaques located between the cell membrane and 
Z-discs in cardiac muscle and certain types of skel- 

etal muscle (Pardo et al., 1983a,b; Koteliansky and Gneu- 
shev, 1983; Shear and Bloch, I985). Pardo and colleagues 
(1983a) used the term "costamere" to define them because of 
the rib-like appearance of the plaques when immunostained 
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with an anti-vinculin antibody. Based on their location, and 
the presence of vinculin, it was proposed that they play a role 
in anchoring the Z-discs to the plasma membrane, and thus 
aid in maintaining the spatial organization of the myofibrils 
during cycles of contraction and relaxation (Pardo et al., 
1983a,b; Craig and Pardo, 1983). This hypothesis is sup- 
ported by earlier electron microscopic data, showing fibrous 
or plaque-like connections between the sarcolemma and the 
Z-lines of the myofibrils lying closest to the membrane (Ben- 
nett and Porter, 1953; Allen and Pepe, 1965; Ferrans and 
Roberts; 1973; Granger and Lazarides, 1978; Street, 1983), 
and by micrographs showing festooning of the sarcolemma 
in contracted muscle fibers (Myklebust et al., 1980; Pierbin- 
Bormioli, 1981; Chiesi et al., 1981; Shear and Bloch, 1985). 
In addition, other proteins known to be involved in cyto- 

�9 The Rockefeller University Press, 0021-9525/92/09/1411/I0 $2,00 
The Journal of Cell Biology, Volume 118, Number 6, September 1992 1411-1420 1411 



skeleton-membrane interactions have been localized to sites 
coincident with costameres by immunofluorescence tech- 
niques. These include talin (Belkin et al., 1986; Terracio 
et al., 1989, 1990), spectrin (Repasky et al., 1982; Nelson 
and Lazarides, 1983; Craig and Pardo, 1983; Messina and 
Lemanski, 1989), gamma-actin (Craig and Pardo, 1983), in- 
termediate filament proteins (Lazarides, 1978; Granger and 
Lazarides, 1978; Price and Sanger, 1979; Craig and Pardo, 
1983), and clathrin (Kaufman et al., 1990). Some of these 
proteins are not restricted to sites close to the sarcolemma. 
For example, intermediate filaments are found associated 
with each Z-line (Lazarides, 1978; Granger and Lazarides, 
1978). 

Vinculin is a major component of adhesion plaques in 
many cultured, nonmuscle cells (Geiger, 1979; Geiger et al., 
1980). Adhesion plaques, also known as focal adhesions or 
focal contacts, are typically located at the termini of actin- 
containing stress fibers, and are also the sites where the cells' 
contractile forces are transmitted to their substratum or the 
extracellular matrix (Harris, 1986; Burridge, 1986). Be- 
cause of this, it was suggested that another function of costa- 
meres might be to form a mechanical linkage between the 
contractile myofibrils and the extracellular environment. 
(Pardo et al., 1983a,b; Craig and Pardo, 1983; Shear and 
Bloch, 1985). In support of this idea is the demonstration by 
Street (1983) that some portion of the forces produced during 
contraction of frog sartorius muscle are transmitted laterally 
across the muscle fiber. Further support for this idea comes 
from the immunolocalization of extracellular matrix recep- 
tor molecules (Bozyczko et al., 1989; Terracio et al., 1990; 
Hilenski et al., 1991), receptor-associated proteins (Terracio 
et al., 1989), and collagen fibrils (Borg et al., 1983; Robin- 
son et al., 1987) to the sites of costameres. Despite these 
striking molecular similarities between costameres and cell 
adhesions, direct physical evidence showing that costameres 
are sites where contractile forces are transmitted to the ex- 
tracellular matrix has been lacking. 

Using the flexible silicone rubber substratum technique, 
developed by Harris and colleagues (Harris et al., 1980, 
1981), we examined the relationship between vinculin- 
containing costameres, close adhesive contacts, and the 
forces applied to the substratum by living adult rat cardiac 
myocytes. The silicone rubber substratum is thin, optically 
clear, and sufficiently weak so as to be distorted by the con- 
tractile forces of individual cells (Harris et al., 1980). These 
contractile or "traction" forces, which are transmitted to the 
substratum through cell-substratum adhesions, result in the 
formation of wrinkles in the silicone rubber sheet. The wrin- 
Ides are dynamic; previous work has shown that wrinkles 
increase when fibroblasts' microtubules are disrupted (Da- 
nowski, 1989) and they disappear upon detachment of the 
cells, or when actin-containing fibers are disrupted by cyto- 
chalasin (Harris, A. K., and D. Stopak. 1980; J. Cell Biol. 
87:57a) or by phorbol ester treatment (Danowski and Harris, 
1988). 

Adult rat cardiomyocytes attach and spread well on 
laminin-coated silicone rubber substratum. They remain as 
individual cells, and retain the ability to contract for 15 d or 
more. Furthermore, the components of their myofibrils are 
not static, rather dynamic; upon microinjection, they rapidly 
incorporate fluorescently labeled ~-aetinin, actin, vinculin, 
and myosin light chains (LoRusso et al., 1992). By microin- 
jecting either fluorescently labeled t~-actinin or vinculin into 

living, adult rat cardiac myocytes grown on the flexible sili- 
cone rubber substratum, we have been able to correlate the 
pattern of substratum wrinkles generated by these cells as 
they beat, with the locations of both the Z-lines of the con- 
tracting myofibrils and the costameres. Our observations in- 
dicate that traction forces are exerted on the substratum at 
locations coincident with costameres in well-spread 7-10- 
d-old cultured heart cells. Interference reflection microscopy 
(IRMa; Gingell and Todd, 1979; Izzard and Lochner, 1980) 
identified the locations of close contacts to the substratum, 
which colocalized with costameres, as determined by im- 
munofluorescence techniques. Also, the banded close con- 
tacts were coincident with the Z-lines of the myofibrils, and 
the pattern of close contacts matched the pattern of substra- 
tum wrinkles. These observations indicate that in well- 
spread cells, costameres, similar to attachment plaques, 
function as sites of force transmission to the substratum and 
the extracellular matrix. 

Materials and Methods 

Cell Culture 

Cells were isolated from the hearts of mate rats, 200-225 g (Wistar, VAF/+. 
Charles River, Wilmington, MA), by retrograde perfusion with col- 
lagenase, as previously described (LoRusso et at., 1992). Cells were plated 
onto either glass-bottomed dishes (MatTek Corporation, Ashland, MA) 
coated with 20 #g of laminin (Gibeo-BRL, Gaithersburg, MD), or silicone 
rubber substrata, upon which a drop of laminin (20 #g) was placed. 

Silicone Rubber Substrata 

Flexible rubber substrata were prepared as described by Harris (Harris et 
al., 1980; Harris, 1988). Briefly, a thin layer of silicone fluid, (poly 
(dimethyt siloxane), 30000 cP, Dow Coming, Midland, MI) was spread 
onto the bottom of glass-bottomed dishes. The dish was inverted over the 
flame of a bunsen burner for "~1 s, to polymefize only the uppermost layer 
of the fluid. 

Preparation of Fluorescent Probes and Microinjection 

Alpha-actinin and vinculin were purified as previously described (Fer- 
amisco and Burridge, 1980; Sanger et al., 1986b; Hock et at., 1989). Label- 
ing of atpha-actinin with IATR (iodacetamidotetramethyl rhodamine; Mo- 
lecular Probes, Eugene, OR) was carried out as described by Meigs and 
Wang (1986). SR-vinculin (rhodamine, succinlmidyl ester; Molecular 
Probes, Eugene, OR) yeas prepared as follows: purified vinculin was dia- 
lyzed into 50 mM KC1, 10 mM K904, pH 7, and concentrated to 2-3 
mg/ml. Immediately before labeling, the pH of the vinculin solution was 
raised by adding 1 M Na-bicarbonate, pH 9.2, at 1/5 the volume of the pro- 
teia solution. SR dye was added, at a concentration of 50 pg dye per milli- 
gram of protein, This was stirred for 1 h, at 4~ in the dark. The labeling 
reaction was stopped with 50 mM Tris plus 1 mM EDTA. Free dye was 
separated from labeled protein using a prepacked Sephadex (3-25 column 
(Pharmacia Fine Chemicals, Piscataway, NJ), preequilibrated with buffer B 
(20 mM Tris, 20 mM NaCI, 0.1 mM EDTA, pH 7.6). The protein was then 
loaded onto an anion exchange column (DE-52 cellulose; Whatman, Clif- 
ton, NJ), equilibrated with buffer B. After extensive washing, the protein 
was eluted with 200 mM NaCI. The protein was dialyzed into buffer con- 
tatning 100 mM KC1, 0.1 mM EGTA, 10 mM KPO4, pH 7.5, and concen- 
trated by vacuum concentration to ,~0.5-1.0 mg/ml. Microinjection was 
done as previously described (Sanger et at., 1985). 

Microscopy and Image Processing 

Interference Reflection Microscopy. Cell contacts were observed in either 
living cells or fixed cells, using a Nikon Diaphot inverted microscope, with 
a tungsten light source in the epi-illumination port, and either a Nikon 40x, 
1.3 NA oil immersion objective with a variable aperture, or a Nikon 100• 

1. Abbreviation used in this paper: IRM, interference reflection microscopy. 
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1.3 NA with a variable aperture. A filter cube containing a half-silvered mir- 
ror (Omega Optics, Brattleboro, Vermont) was placed in the position usu- 
ally occupied by fluorescence filters. The image produced indicates the dis- 
tances between the cells' ventral surfaces and the substratum: very dark or 
black areas correspond to indicate area distances of ,~10-15 nm, gray areas 
indicate distances of • 30 nm, and light or white areas indicate distances 
of 100 nm or more (Izzard and Lochner, 1980; but see also Gingell and 
Todd, 1979). 

Image Acquisition and Processing. Images of cells containing fluores- 
cently labeled, injected proteins were recorded onto 3/4 in videotape, using 
a Dage SIT camera mounted onto a Nikon Diaphot inverted microscope. 
Images were summed and processed using the Image 1 image processing 
program (Universal Imaging, West Chester, PA). 

Optical Calipers. The "Measure with Caliper" function in Image 1 en- 
ables one to adjust two parallel lines (simulating the arms of a caliper) to 
any width. The calipers can be stamped into one or more frame buffers at 
a specified location. By loading series of images into these frame buffers, 
one can compare distances or locations of structures between images. Al- 
though there is precise pixel alignment of the simulated caliper from frame 
buffer to frame buffer, the images we compared in this study were of living, 
beating cardiac cells, so we cannot assume precise pixel alignment between 
images. 

I m m u n o f l u o r e s c e n c e  

mAb to vinculin was purchased from Sigma Chemical Co. (St. Louis, MO). 
Cells were washed with PBS and fixed for 3 rain in 4% paraformaldehyde 
plus 0.1% Triton X-100 in Pipes-buffered saline (10 mM Pipes, 150 mM 
NaCI, pH 7.2). All subsequent washing steps were done with Pipes-buffered 
saline plus 0.1% Triton. The cells were permeabilized using 0.5% Triton 
X-100 for 5 rain, washed, and then incubated with anti-vinculin antibody 
for 2 h at room temperature. After thorough washing, cells were incubated 
for 1 h in DTAF-goat anti-mouse IgG (Jackson Immunologicals, West Grove, 
PA). Coverslips were mounted in MOWlOL (Calbiochem-Behring Corp., 
LaJolla, CA). 

Results 

Adult heart cells plated onto silicone rubber substrata were 
examined daily for indications of substratum distortions oc- 
curring either in conjunction with beating activity or as a re- 

sult of cell spreading. Despite the fact that many of the cells 
spread out considerably and continued to beat, there was no 
evidence of substratum wrinkling by heart cells for at least 
the first 6 d of culture. Occasionally, we noted some shifting 
or tugging of the substratum during contraction, indicating 
some change in the forces exerted on the substratum, but no 
substratum wrinkles resulted. It should be noted that con- 
taminating fibroblasts were able to form substratum wrin- 
kles during this time. 

After 7-10 d in culture, most cells were well-spread and 
many cells were beating. Immunofluorescence microscopy 
(performed in fixed cells) showed numerous well-developed 
myofibrils localized predominantly to the center of the cells. 
We were quite surprised when, in these older cultures, we 
observed instances where cycles of contraction and relaxa- 
tion caused the formation and disappearance of many evenly 
spaced wrinkles in the silicone rubber substratum (Fig. 1). 

The most striking feature of these cell-spread, beating 
cells was the unique pattern of substratum wrinkles which 
they generated. They appeared as very regular, closely 
spaced pleats which formed underneath the central portion 
of the cell (Fig. 1). This wrinkle pattern differs significantly 
from those made by fibroblasts, where each cell generates 
one or at most a few wrinkles, which form predominantly 
behind the leading lamellae (Fig. 2 a). Note that the wrinkles 
are readily apparent in phase-contrast microscopy; each 
wrinkle appears as a light and dark line. Focal adhesions, 
identified by vinculin localization, form distal to the wrin- 
kles in fibroblasts (Fig. 2 b). 

The spacing between the pleat-like wrinkles made by the 
cardiac myocytes was measured to be between 1.8-2.0 #m, 
which suggested to us that they are formed between adjacent 
contracting sarcomeres. And since the wrinkles result from 
forces transmitted through the cell membrane to the substra- 
tum, it further suggested that the cells have a series of trans- 

Figure L A living, contracting 
adult rat cardiac myocyte cul- 
tured on the flexible silicone 
rubber substratum for 9 d. 
Note the closely spaced, pleat- 
like wrinkles in the rubber 
substratum. Bar, 10 #m. 

Danowski et al. Costameres Are Sites of Force Transmission 1413 



Figure 2. Live fibroblast, microinjected with fluorescently labeled 
vinculin, shows the typical pattern of substratum wrinkles gen- 
erated by these cells, and the corresponding distribution of focal ad- 
hesions, seen by vinculin localization. (a) Phase contrast; arrows 
indicate wrinkles; (b) Vinculin distribution. Note that the vinculin- 
rich focal adhesions are found distal to the wrinkles. Bar, 10 tzm. 

membrane adhesion sites whose pattern of distribution 
closely parallels tlae Z-lines of the sarcomeres. 

To ascertain directly the relationship between the substra- 
tum wrinkles and sarcomeres, we microinjected fluores- 
cently labeled a-actinin (IATR-c~-actinin) into living cells 
grown on silicone rubber substrata. Fluorescently labeled 
c~-actinin is known to incorporate rapidly into the existing 
Z-lines of both cardiac and skeletal muscle ceils (Sanger et 
al., 1984, 1986a,b; McKenna et al., 1985, 1986). By switch- 
ing from phase to fluorescence optics, direct comparisons of 
the positions of the Z-lines and the substratum wrinkles were 
made (Fig. 3), Fig. 4 shows an enlarged portion of the cell 
in Fig. 3. Comparisons of the distances between Z-lines and 
wrinkles were done using adjustable calipers (Image 1 Soft- 
ware, see Materials and Methods). The calipers were sized 
such that they represented the distance between adjacent 
~-actinin-positive Z-lines, seen in the fluorescence image. 
By overlaying the image of the calipers onto the phase-con- 
trast picture, one can see that wrinkles form between adja- 
cent Z-lines, and that the spacing between wrinkles approxi- 
mates the sarcomere length. 

In some cases, we found cells which were well-spread, but 
did not produce substratum wrinkles as they contracted. 
Since neighboring fibroblasts produced substratum wrin- 

Figure 3. Distribution of IATR-a-actinin in a 10-d cultured adult 
heart cell, which is producing pleat-like wrinkles upon contraction. 
(a) Relaxed; (b) contracted; (c) fluorescent image showing the dis- 
tribution of the a-actinin-containing Z-lines. Arrow indicates the 
area of enlargement in Fig. 4. Bar, 10 #m. 

Ides, we concluded that the substratum was able to be 
deformed. Many of these cells had fewer myofibrils, and by 
careful through-focusing, we noted some cases where the 
myofibrils were not localized to the ventral cell surface (data 
not shown). Other cells appeared to have a normal comple- 
ment of myofibrils throughout the cell. It is unclear whether, 
in some of these instances, the myofibrils were degenerating, 
and had lost their connections to the sarcolemma. Another 
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Figure 4. Enlargement of the upper right portion of the cell in Fig. 
3, comparing the Z-line distribution with the pattern of wrinkles. 
Arrows in b point to the calipers, which were placed over the 
Z-lines. The image of the calipers was overlaid onto the phase- 
contrast image in a. Wrinkles form between adjacent Z-lines. Bar, 
5 #m. 

explanation is that the myofibrils were attached to the sar- 
colemma only on the dorsal cell surface. This latter possibil- 
ity is supported by the fact that in some beating cells, al- 
though no substratum wrinkles were produced, the cell 
surface shifted rhythmically during cycles of contraction and 
relaxation. 

We next examined the relationship between substratum 
wrinkles and vinculin localization, by microinjecting SR- 
labeled vinculin into 7-8-d-old heart cell cultures grown on 
silicone rubber substrata. Observations were made 1-2 d af- 
ter injection. At the periphery of all cells were vinculin- 
positive attachment plaques, some of which had no apparent 
association with the ends of myofibrils (Fig. 5 b, arrows). In 
cases where the cells were contracting, but not producing 
pleat-like wrinkles, the distribution of vinculin in the center 
of the cells, underneath the myofibrils, varied considerably. 
In some cells, the vinculin appeared unorganized, or orga- 
nized into long streaks (Fig. 5, c and d). In other cells, vincu- 
lin had a sarcomeric distribution; that is, linear arrays of 
spots or bands, aligned perpendicular to the myofibrils, with 
a spacing that approximates the distance between adjacent 
Z-lines (Fig. 5, a and b). These appear to be costameres, as 
defined by Pardo et al. (1983a). These two sorts of vinculin 
arrangements, unorganized/streaky and sarcomeric, were 

found in both beating and quiescent, non-beating cells. In 
contrast, whenever cells produced "pleat-like" wrinkles in 
the substratum upon contraction (Fig. 6), vinculin distribu- 
tion was always sarcomeric. Note that costameres are located 
in the same area of the cell where substratum wrinkling is 
occurring. We never found cells producing pleat-like wrin- 
kles which did not have vinculin distributed in a periodic 
fashion along the myofibrils closest to the wrinkles. There- 
fore, it appears that the ability to generate pleat-like wrinkles 
upon contraction is correlated with the presence of costa- 
meres. 

To investigate further the premise that costameres are sites 
of cell-substratum adhesion, we used IRM (see Materials 
and Methods) to identify areas of the cells which are closely 
apposed to underlying substratum, and then compared these 
to the distribution of vinculin. Cells were grown on laminin- 
coated glass coverslips for 8-14 d, fixed and stained with an 
anti-vinculin antibody, and then examined under both fluo- 
rescence and IRM optics. It should be mentioned that the 
laminin coating produces a slight alteration in the IRM im- 
ages, but it is easy to discern very dark areas from both gray 
areas and lighter areas. We observed instances where the 
costameres, characterized by a banded distribution of vincu- 
lin, colocalized with dark bands in the IRM image (Fig. 7). 
The areas of banded contact sites were restricted to the 
centers of the cells, underneath the myofibrils. It should also 
be noted that the number of cells containing both a sarco- 
meric distribution of vinculin and a corresponding IRM im- 
age of close contacts increased with the age of the culture. 
Also, we often observed cells that possessed vinculin- 
positive costameres, but lacked a corresponding pattern of 
close contacts. 

We observed similar IRM images in live cells. Fig. 8 
shows the IRM image of a live heart cell cultured for 3 d on 
a laminin-coated glass coverslip, next to two fibroblasts. 
Note the mottled IRM contacts made by the spreading myo- 
cyte, and the typical pattern of dark, focal contacts made by 
the fibroblasts. Fig. 9 shows the IRM image of a live heart 
cell cultured for 9 d. The sarcomeres are readily apparent 
in the phase-contrast image. The corresponding IRM image 
shows that underneath the myofibrils are dark bands, whose 
spacing is approximately equal to the spacings between sar- 
comeres. Note that some of the dark IRM bands appear 
spotty or discontinuous. We have observed, in living cells, 
other instances of dark IRM bands which appear solid, such 
as those seen in Fig. 7 b. The discontinuities might represent 
intermediate stages in the formation or degradation of these 
contacts. It should also be mentioned that IRM can be per- 
formed on the silicone rubber substratum (Harris, 1988). 
The IRM images we obtained on the flexible substratum 
were not as sharp and had less contrast than those made on 
glass coverslips, probably due to the extra thickness of the 
preparation. Nevertheless, we were able to find occurrences 
of banded close contacts underneath myofibrils in cells 
grown for 9-10 d on the silicone rubber (data not shown). 
In instances where the cells were contracting, dark lines ap- 
peared and disappeared in the IRM image. We were not able 
to determine with certainty whether this indicates that the 
rubber substratum puckers downward upon contraction. 

Discussion 

Costameres, rib-like connections to the sarcolemma which 
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Figure 5. Distribution of SR-vinculin in cultured adult heart cells that are NOT producing pleat-like wrinkles upon contraction. (a and 
b) Phase and fluorescent images of a cell that has a costameric distribution of vinculin, but nevertheless, did not wrinkle the rubber sub- 
stratum upon contraction. (c and d) Phase and fluorescent images of a contracting, nonwrinlding cell which has a disorganized, streak-like 
distribution of vinculin. Arrows indicate focal adhesions. Bar, 10 ~,m. 

are in register with the Z-lines of the subjacent myofibrils, 
are characterized by the presence of vinculin (Pardo et al., 
1983a,b; Koteliansky and Gneushev, 1983). Vinculin was 
one of the first proteins identified whose localization was re- 
stricted to sites of interaction between actin stress fibers and 
the plasma membrane (Geiger, 1979; Geiger et al., 1980). 
It is now known that vinculin is a major component of all 
adherens-type junctions; its presence defines a region of 
plasma membrane specialized either for cell-cell or cell- 
substratum/-ECM interaction (for review, see Geiger and 
Ginsberg, 1991). 

In recent years, it has become apparent that costameres 
have many characteristics common to the celI-ECM type of 
adherens junction, in particular, the focal adhesion or adhe- 
sion plaque (see Burridge, 1986, for review of the terminol- 
ogy). For example, both costameres and focal adhesions are 
membrane-associated plaques located where bundles of ac- 
tin filaments connect to the plasma membrane (Pardo et al., 
1983a; Geiger et al., 1980; Burridge et al., 1988). They are 
enriched not only in vinculin, but talin (Burridge and Con- 
nell, 1983; Belkin et al., 1986; Tidball et al., 1986; Terracio 
et al., 1989) and integrins (Bozyczko et al., 1989; Terracio 
et al., 1991). ECM materials often become concentrated on 
the extracellular surfaces of the plaques (Borg et al., 1983; 
Robinson et al., 1987; Hynes et al., 1982; Chen et al., 

1985). They tend to be coincident with the sites of closest 
physical contact to the substratum, as seen by IRM (Geiger, 
1979; Burridge et al., 1988; Terai et al., 1989; Decker et 
al., 1990). 

The results presented here provide additional evidence of 
the similarity between focal adhesions and costameres. 
Using adult rat heart cells, the flexible silicone rubber tech- 
nique (Harris et al., 1980), and fluorescently labeled 
cytoskeletal proteins, we have now shown directly that costa- 
meres, like focal adhesions, are sites where forces are trans- 
mitted extracellularly to the substratum. We base this con- 
clusion on the following: (a) pleat-like wrinkles form in the 
flexible substratum as the ceils beat, and the spacings of the 
wrinkles are comparable to the distance between adjacent 
Z-lines; (b) the presence of pleat-like wrinkles is always as- 
sociated with a periodic distribution of vinculin in the areas 
where the pleats form; and (c) after 8-10 d in culture, the 
ceils develop a banded pattern of dark focal contacts (as de- 
termined by IRM), whose periodicity is identical to the spac- 
ings of the Z-lines. This paper establishes for the first time 
that costameres can transmit force from the contractile ap- 
paratus to the extraceUular matrix, as proposed by others 
(Granger and Lazarides, 1978; Pardo et al., 1983a,b; Shear 
and Bloch, 1985; Street, 1983; Terracio et al., 1990). Fur- 
thermore, it seems clear that costameres can function as at- 
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Figure 6. Distribution of SR-vinculin in a cultured adult heart cell 
which is producing pleat-like wrinkles upon contraction. Note the 
costamerie distribution of vinculin in the areas where wrinkling is 
occurring. Bar, 20 #m. 

tachment complexes, composed of not only vincutin, but 
ot-actinin, talin, and integrin. 

While it is true that costameres share many similarities 
with focal adhesions, they have some rather important and 
intriguing differences. First of all, during the time that adult 
rat heart cells are most rapidly spreading, that is, between 
2 and 6 d after isolation, focal adhesions are preferentially 
formed, while costameres are gradually lost or greatly re- 
duced in number. The newly formed focal adhesions are sites 
of very close contact to the substratum, as seen by IRM 
(Terai et al., 1989; Decker et al., 1988, 1990; Imanaka- 
Yoshida, K., B. A. Danowski, J. M. Sanger, and J. W. Sanger, 
manuscript in preparation), but the costameres show no cor- 
responding pattern of close contacts at this stage (Lmanaka- 
Yoshida, K., B. A. Danowski, J. M. Sanger, and J. W. Sanger. 
1991. J. Cell Biol. 115:167a). Some differences in the two 
structures must exist, in order to explain the preferential for- 
marion of focal adhesions as cells spread. 

Another important difference between focal contacts and 
costameres is the presence, in the latter, of proteins not usu- 
ally associated with focal adhesions. These include spectrin 
(Repasky et al., 1982; Craig and Pardo, 1983; Nelson and 
Lazarides, 1983; Messina and Lemanski, 1989), clathrin 
(Kaufman et al., 1990), and intermediate filament proteins 
(Granger and Lazarides, 1979; Craig et al., 1983). Each of 
these proteins has been shown to be involved with mem- 
brane-cytoskeletal interactions: spectrin links actin fila- 
ments to the erythrocyte plasma membrane (Branton et al., 
1981) and is found underlying the plasma membrane in many 
cell types (for review, see Bennett, 1990); clathrin is a com- 
ponent of coated pits, which form endocytic vesicles from in- 
foldings of the plasma membrane (see Brodsky for review, 
1988), and intermediate filaments are a major component of 
spot desmosomes, a type of cell-cell junction (see Schwarz 
et al., 1990). It is possible that the colocalization of these 

Figure 7. Distribution of anti-vinculin antibody in a fixed, 13-d cultured adult rat heart cell (a), and the corresponding IRM pattern of 
gray, close contacts (b). b is enlarged 2x. Bar, 10 #m. 
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Figure 8. IRM images of a 3-d-old cultured heart cell (upper) and 
fibroblasts (lower). Bar, 10 #m. 

proteins to the sites of costameres is unrelated to the assem- 
bly or function of an adhesive structure. In the case of inter- 
mediate filaments, however, there is sufficient reason to en- 
tertain the possibility of a more active role in cell-ECM 
attachment. 

In some stratified squamous epithelia, intermediate illa- 
ments insert into the plasma membrane at plaques known as 
hemidesmosomes (Bershadsky and Vasiliev, 1988; Schwarz 
et al., 1990). These structures are important for cell adhe- 
sion to the basal lamina, and for that reason, are homologous 
to focal contacts. However, they are considered distinct from 
the adherens type junctions (Geiger and Ginsberg, 1991). 
Recently, it has been shown that an integrin, ot6/34, is a com- 
ponent of hemidesmosomes (Stepp et al., 1990), and that an- 
tibody to this integrin inhibits the formation of hemidesmo- 
somes in a transformed cell line (Kurpakus et al., 1991). 
Although the exact protein components responsible for link- 
ing intermediate filaments to integrins at hemidesmosomes 
are not known, these findings show that integration of the 

Figure 9. IRM image of a living adult rat heart cell, cultured on a 
glass coverslip. (a) Phase-contrast image of the cell. Arrows indi- 
cate the sarcomere spacing. (b) IRM image, showing the pattern of 
close contacts. Arrows indicate distance between close contacts. 
Bar, 10 #m. 

cytoskeleton with the extracellular matrix can be accom- 
plished via intermediate filaments. In other words, integrins 
mediate both intermediate filament-membrane-ECM inter- 
actions as well as actin filament-membrane-ECM interac- 
tions. This raises the possibility that the colocalization of 
intermediate filament proteins and vinculin at costameres 
might represent a unique attachment complex, which com- 
bines both intermediate filament-integrin plaques and vincu- 
lin-talin-integrin attachment plaques. Adult and neonatal rat 
cardiac cells are known to express the/31 integrin chain, and 
the od, or3, and or5 chains (Terracio et al., 1991), but it is not 
known if they express c~6/34, or if other r integrin hetero- 
dimers will also interact with intermediate filaments. 

The colocalization of membrane-associated proteins such 
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Figure 10. Diagram summarizing the relationship between sub- 
stratum wrinkles and the transmembrane linkage between the myo- 
fibrils and the ECM. (A) Continuous transmembrane linkage, re- 
laxed state. (B) Continuous transmembrane linkage, contracted 
state. Substratum wrinkle occurs between two adjacent costameres. 
Forces are transmitted through the costameres. (C) Discontinuous 
transmembrane linkage, contracted state. The contractile forces are 
not transmitted to the substratum through the costameres, and no 
wrinkling occurs. Note that the distribution of vinculin (and maybe 
other proteins) remain(s) "costamericY 

as spectrin and clathrin to costamere sites also invites the 
speculation that costameres are composite structures, con- 
taining one set of proteins whose function is to anchor Z-discs 
to the plasma membrane, and another set of proteins in- 
volved in mechanically coupling the Z-discs to the extracel- 
lular matrix. These two sets of proteins could interact to 
form a complex capable of transmitting forces to the ECM, 
but they could also exist independently (see Fig. 10). The 
ability to exist independently would enable the ceils to redis- 
tribute their contractile forces if necessary. For example, 
during adaptation to tissue culture, or during wound healing, 
the presence of an extensive costarneric attachment complex 
would most likely hinder the cells' ability to spread. By 
uncoupling the Z-disc-to-membrane attachments from the 
membrane-ECM attachments, newly forming adhesions are 
not stressed by the cells' contractile forces, and spreading can 

occur. A number of observations support this idea. First, we 
and others have shown that during the most active stages of 
cell spreading, costameres are not present, despite the fact 
that the majority of freshly isolated adult rat cardiac cells 
have costameres (Decker et al., 1990; Imanaka-Yoshida, K., 
B. A. Danowski, J. M. Sanger, and J. W. Sanger, 1991. J. 
Cell Biol. 115:167a; Imanaka-Yoshida, K., B. A. Danowski, 
J. M. Sanger, and J. W. Sanger, manuscript in preparation). 
Second, cells can develop a banded distribution of vinculin, 
coincident with the Z-lines, yet have no corresponding pat- 
tern of dark focal contacts. Therefore, although vinculin is 
localized in a costameric pattern, these vinculin-positive 
structures do not constitute a "functional costamere," that is, 
one capable of transmitting substantial forces (i.e., forces 
sufficient to deform the silicone rubber substratum) to the 
substratum. This interpretation is supported by the finding 
of Hilenski et al. (1991) that during the culture of neonatal 
rat heart cells, vinculin organization into costameres pre- 
cedes the organization of/~1 integrin at these sites. 

From the above discussion, it is apparent that the pro- 
tein-protein interactions occurring at costameres are highly 
regulated. It is well established that vinculin, talin, and inte- 
grins can be phosphorylated (Tamkun et al., 1986; see 
reviews by Buck and Horwitz, 1987; Otto, 1990; Beckerle 
and Yeh, 1990); changes in phosphorylation could alter the 
binding affinities of the individual proteins, and disrupt the 
continuity of the transmembrane linkage. This would result 
in changes in the ability to transmit forces. Another possibil- 
ity is that an as yet unidentified "clutch" protein exists, which 
regulates the integrity of the transmembrane linkage in re- 
sponse to specific stimuli. It will be interesting to see if 
the recently characterized focal contact proteins, paxillin 
(Turner et al., 1990) and zyxin (Crawford and Beckerle, 
1991), localize to costameres. 
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