
Our results suggest a new form of plas-
ticity in that axons deprived of normal
terminal sites, by the subtotal degenera-
tion of cells in a target nucleus, shift their
connections to local surviving neurons.
Indeed, the hyperinnervation of selected
neurons may itself play a role in deter-
mining which cells survive and which
die.
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Molecular Microanalysis of Pathological
Specimens in situ with a Laser-Raman Microprobe

Abstract. A laser-Raman microprobe has been used to identify microscopic in-
clusions of silicone polymer in standard paraffin sections of lymph node. This ex-

ample oforganic chemical microanalysis in situ in pathological tissue represents an

extension of microanalytical capabilities from elemental analysis, performed with
electron and ion microprobes, to compound-specific molecular microanalysis.

We report here the successful appli-
cation of micro-Raman spectroscopy to
the detection and identification of com-
plex silicone polymer fragments in stan-
dard tissue sections. This technique, de-
veloped recently in two laboratories (1,
2), offers exciting new prospects for bio-
logical studies by providing nondestruc-
tive compound-specific molecular micro-
analysis with good spatial resolution and
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high sensitivity to principal molecular
components. A major weakness of cur-
rent techniques [employing electron (3),
proton (4), and ion (5) beam instruments
with x-ray or secondary ion analysis] has
been their general limitation to inorganic
and elemental rather than organic and
compound identification.
The instrument we used, which was

developed at the National Bureau of

Fig. 1. Schematic diagram of the laser-Raman
microprobe developed at the National Bureau
of Standards. Any one of several laser wave-
lengths in the visible region of the spectrum is
used to excite the micro-Raman spectrum.
Nonlasing plasma lines are removed by use of
a predispersing prism. The radiation scattered
by the sample is collected over a large solid
angle in 1800 backscattering geometry. Later-
al spatial resolution of the probe measurement
is determined by the spot size of the laser on
the sample and a spatial filter (exit pinhole,
not shown) placed in the path of the collected
scattered light. Depth resolution is several mi-
crometers (but less than - 12 ,um), depending
on the optical transparency and surface to-
pography of the sample. Typical measure-
ment parameters employed in the micro-
analysis of thin sections of biological soft tis-
sue are: laser wavelength, 514.5 nm (green)
and 647.1 nm (red); laser power, 5 to 60 mW
(at sample); laser spot diameter, 6 to 20 ,tm;
time constant, 1 to 5 seconds; scan rate, 50 to
10 cm-, per minute; and spectral slit width, 3
cm'.
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Standards, is shown schematically in
Fig. 1 and has been described in detail
elsewhere (2). So far, it has principally
been used for the identification and spec-
troscopic characterization of individual
microscopic particles in various types of
environmental samples (6, 7). The micro-
probe is basically a conventional mono-
channel Raman spectrometer, optimized
to permit the acquisition of analytical-
quality spectra from single micro-
particles or sample regions of microme-
ter dimensions.

In order to elicit Raman scattering
ing from the microsample, the light beam
from an argon-krypton ion laser is fo-
cused to a small spot (typically 2 to 20
,um in diameter) on the sample, and the
scattered radiation-efficiently collected
by an ellipsoidal mirror-is transferred
into a double monochromator equipped
with holographic gratings. The signal is
detected by a cooled photomultiplier
tube and processed by photon counting
electronics. The sample, in this study a
thin section of biological tissue a few mil-
limeters in lateral dimensions, is sup-
ported by a substrate that does not give
rise to troublesome spectral interfer-
ences. Single-crystal sapphire (a-AI203)
of optical quality serves as a good sub-
strate material. It is chemically inert,
transparent to the excitingradiation (and
hence does not heat), and free from la-
ser-induced fluorescence in the spectral
range of interest. Although sapphire has
a Raman spectrum of its own, even the
few predominant bands are relatively
weak in intensity and do not seriously in-
terfere with the spectra of unknowns.
The spectra obtained with the Raman

microprobe are the so-called Stokes-Ra-
man spectra (8) and are recorded as plots
of scattered light (photon) intensity ver-
sus Raman shift. The lines or bands in a
spectrum arise from molecules that scat-
ter photons of lower frequency (Stokes
lines) than the exciting line. The dis-
placements of the Raman lines from the
exciting line are identified with the fre-
quencies of molecular vibration in the
sample. Thus these spectra of the Ra-
man-scattered light identify the scatter-
ing molecules and, in the case of solid
samples, contain additional information
on the molecular order of the solid phase
from which the nature and extent of
crystallinity may be inferred. The ob-
served micro-Raman spectra have been
shown to be identical to or, in some
cases, even more detailed and informa-
tive than the corresponding bulk Raman
spectra obtained from macroscopic sam-
ples (crystals or powders) of the same
materials (1, 2, 6, 7).
9 NOVEMBER 1979

For measurements to be successful in
the Raman microprobe, the sample can-
not be highly absorbing at the exciting la-
ser wavelength. Appreciable absorption
of the intense incident radiation in-
variably leads to sample heating or de-
struction, even though good thermal
contact with the substrate may provide
some degree of heat dissipation. Initially
there was some concern that biological
samples would be quickly burned under
the intense irradiation, which may reach
several thousand watts per square cen-

timeter. This has not proved to be the
case, and many sections of tissue con-
ventionally prepared have been stable
enough under the beam to yield satisfac-
tory Raman spectra.

In this study we used the 514.5-nm
(green) line of the laser to obtain the
spectra of interest; the laser irradiance
(power per unit area) was in the range 2
to 20 kW/cm2. In other investigations of
hard tissue (such as bone and tooth) laser
light with irradiance levels as high as 0.2
MW/cm2 was focused on the specimen

Fig. 2. Standard (5-,um) sec-
tion of lymph node with for-
eign bodies of silicone rubber
within multinucleated giant
cells. Photomicrograph, in
trausmitted light, hematoxylin
and eosin stin. Arrowheads
indicate several typical in-
clusions of silicone polymer.
Asterisk shows cytoplasmic
area analyzed to obtain the mi-
cro-Raman spectrum of the
host tissue matrix.
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Fig. 3. Spectra recorded in the Raman probe microanalysis of a deparaffinized standard 5-,um
section of lymph node (Fig. 2), mounted on a sapphire (a-AI203) substrate. Measurement pa-
rameters common to each spectrum are: excitation, 514.5 nm; laser spot diameter, 16 ,um; exit
pinhole spatial filter, 140 Fm in diameter; and spectral slit width, 3 cm-'. (A) Spectrum of the
cytoplasm away from foreign bodies. Laser power was 40 mW (at sample); time constant, 5.0
seconds; and scan rate, 20 cm-' per minute. (B) Spectrum of a foreign body (size - 24 ,um)
located within a giant cell. Measurement conditions were the same as for (A). (C) Spectrum of a
small (- 60 ,um) particle of silicone elastomer from ajoint prosthesis. Laser power was 60 mW
(at sample); time constant, 0.5 second; and scan rate, 100 cm-1 per minute. The bands marked S
on spectra (A) and (B) are contributed by the sapphire substrate. The vertical scale (scattered
light intensity) of each spectrum extends from 0 to 1000 counts, with the strongest peaks at
- 3000 cm-' having nearly full-scale intensity. Zero intensity is indicated for each spectrum,
allowing differences in background signal levels to be noted (see text).
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without deleterious effects. Further-
more, potential fluorescence inter-
ferences from major or minor compo-
nents of the sample analyzed under these
conditions have not been a limitation. In
other studies with longer-wavelength ra-
diation (647.1 nm; red), the spectra ob-
tained had fluorescent background levels
significantly smaller than those encoun-
tered in spectra excited with 514.5-nm
radiation. When fluorescence (or emis-
sion by the sample of other forms of non-
Raman light) is observed in microprobe
spectra, its origin is not always easily
traced.
For this work we used a standard par-

affin block of a formaldehyde-fixed
biopsy of an enlarged axillary lymph
node from a patient with a silicone
elastomer finger-joint prosthesis (9).
Standard 5-,um sections were prepared
for initial examination by light micros-
copy (glass slides), scanning electron mi-
croscopy (SEM), and energy-dispersive
x-ray microanalysis (EDXA) (carbon
disks). Parallel sections (unstained) were
mounted on sapphire sample supports
and deparaffinized with xylene for sub-
sequent Raman microprobe analysis.
The light micrograph of a stained section
of the lymph node shown in Fig. 2 dem-
onstrates the foreign material within
multinucleated giant cells. The SEM and
EDXA analyses (performed by J.L.A.)
proved that the foreign bodies contained
silicon. This suggested that the micro-
scopic fragments were silicone rubber
particles from the prosthesis, but direct
molecular identificatiop was not possible
with the information furnished by the x-
ray spectrum. The material did not re-
semble any inorganic crystalline or
glassy structure quder the light micro-
scope or SEM optics. The histology of
the unstained sample section on the sap-
phire substrate was recognizable in the
optics of the laser-Raman system. The
beam was placed on areas of tissue away
from the inclusions of foreign material
and spectra were obtained (Fig. 3).
Spectra were then obtained from 12 indi-
vidual inclusions, which showed ide1ti-
cal and characteristic peaks at sev6ral
wavenumbers. These were compared
with spectra obtained under the same
conditions from particles abraded direct-
ly from a new silicone rubber joint pros-
thesis. The spectra of the inc14siqns in

the giant cells contained peaks identical
to those in the spectra of the prosthesis,
plus additional peaks attributable to the
tissue matrix. The micro-Raman spec-
trum of the prosthesis was identical to
published bulk Raman spectra of poly-
dimethyl siloxane (10).
A similar sample preparation tech-

nique may be satisfactory for analysis of
many heretofore unidentifiable materials
in tissues. Special techniques such as
cryosectioning and freeze-drying (11) or
embedding in other media may be neces-
sary to prevent loss or alterations of cer-
tain materials (12). Some media, such as
epoxy and methacrylate resin, have in-
terfering Raman spectral emissions. By
using computer methods to strip out the
spectral component arising from the em-
bedding material, one can obtain a useful
spectrum that is more easily interpreted.
Further research is needed on the critical
aspects of sample preparation and han-
dling and their effect on the micro-Ra-
man measurement. We would expect that
the less material from the embedding
or processing that remains, the more
straightforward the resulting analysis
will be.

Limitations of this kind of analysis are
due to the signal-to-noise ratio of the in-
strumentation and the light optics of the
laser system. Currently, the smallest
spot size is on the order of 1 ,um. The
sensitivity (detection limits) of this sys-
tem depends on several variables, in-
cluding the instrument design, the vol-
ume analyzed, the Raman scattering
cross section (Raman scattering efficien-
cy) of the compound of interest in a giv-
en matrix, and the distribution of the Ra-
man scatterer (compound of interest) in
the sample matrix. Work is being done to
better define the sensitivity to major and
minor components in various matrices.
For example, Blaha et al. (7) estimated
that carbon coating on environmental
particles has j3een detected at levels of
less than 1 percent by weight (in the
picogram range by absolute mass detect-
ed). Improved optics and signal process-
ing techniques can be expected to in-
crease the efficiency of the system in
new instrumentation.

It is important in studying tissues for
diagnostic or forensic applications to be
able to correlate the analysis with the
morphology. In situ microanalysis may

often be much more valuable than bulk
analysis, which destroys topographic
relationships. In this way, materials as-
sociated with specific pathological reac-
tions can be identified (3). We believe
that this laser-Raman microprobe sys-
tem, by extending microanalytical tech-
niques from the elemental to the molecu-
lar level, has a great potential for use in
many applications in pathology, toxicol-
ogy, forensics, and environmental stud-
ies.
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