One of many research initiatives in assistant professor Rick Matthews' lab focuses on the role of extracellular matrix and cell surface glycoproteins in the developing nervous system and in learning, memory, plasticity and diseases. This slide shows extracellular matrix (ECM) staining on a glioma initiating cell.

Neuroscience Program Faculty

Eduardo C Solessio, PhD

Eduardo C Solessio, PhD
Appointed 09/13/10
3611 Institute For Human Performance
505 Irving Ave.
Syracuse, NY 13210

315 464-7746

Current Appointments

Hospital Campus

  • Downtown

Research Programs and Affiliations

  • Biomedical Sciences Program
  • Neuroscience Program
  • Ophthalmology

Education & Fellowships

  • Postdoctoral Fellow: University of Utah, 1999
  • PhD: Syracuse University, 1993

Research Interests

  • Using electrophysiological and pharmacological tools we are assessing the strength of calcium-dependent feedback loops in rods and cones of Xenopus at various stages of development.


Development of feedback mechanisms in photoreceptor cells

The phototransduction pathway in rods and cones converts light signals into electrical signals that are relayed to the inner retina and brain structures. Central to the operation of the phototransduction pathway are feedback mechanisms that shape the electrical signal to prevent saturation and extend the range of the responses. We are currently investigating the development of these feedback pathways. Is the strength of the feedback dependent on the age? Is there a genetic program controlling the strength of the feedback? Is the information extracted from the visual world a function of age? Using electrophysiological and pharmacological tools we are assessing the strength of calcium-dependent feedback loops in rods and cones of Xenopus at various stages of development.

Mutations in rhodopsin and retinal degeneration

Perhaps one of the leading objectives of modern neuroscience is to establish links between genes and behavior. The issue takes a critical turn when particular mutations in the gene of interest result in disease, and in the case of the visual system, loss of sensitivity and blindness. In the case of rhodopsin, more than 90 mutations have been identified that result in visual deficits. We are studying how specific mutations (E113Q, G90D) in rhodopsin alter rod function and visual sensitivity. To this purpose we are generating transgenic Xenopus expressing rhodopsin with the point mutation of interest. The functional status of individual rods is evaluated with suction electrode techniques. Visual sensitivity of transgenic animals is determined using a behavioral assay we developed recently.

Feedback mechanisms regulating the response of bipolar cells

Bipolar cells relay information from photoreceptors to the inner retina where they contact amacrine and ganglion cells. In turn, amacrine cells make reciprocal synapses onto the bipolar cell axon terminals, establishing a feedback loop that regulates the electrical properties of the bipolar cells. We are investigating how amacrine cell feedback loops acting on the bipolar cell terminal modulate the gain of the bipolar cells. To this end, we are developing a transgenic Xenopus model with altered levels of amacrine cell feedback.

Faculty Profile Shortcut:

Additional Collaborators

  • Paul Gold, PhD
    Professor, Biology (Syracuse University)
    Research Interests: Aging, Cell Signaling and Communication, Learning, Memory, and Plasticity, Neurological and Psychiatric Conditions.
  • James Hewett, PhD
    Associate Professor, Biology (Syracuse University)
    Research Interests: Neuroscience and Central Nervous System Neurobiology and Pathology: Neuromodulators and Epilepsy: Arachidonic Acid Metabolism and Cyclooxygenase-2: Cytokines and Interleukin-1beta: Signal Transduction and Gene Expression.
  • Sandra Hewett, PhD
    Professor, Neuroscience, Biology (Syracuse University)
    Research Interests: Mechanisms underlying cell death in the central nervous system: the interplay between excitotoxicity and inflammation.
  • Donna Korol, PhD
    Associate Professor, Biology (Syracuse University)
    Research Interests: Neural mechanisms of learning and memory across the lifespan.
  • Katharine (Kate) Lewis, PhD
    Associate Professor, Biology (Syracuse University)
    Research Interests: Specification and patterning of spinal cord interneurons; Formation of functional neuronal circuitry; Evolution of spinal cord patterning and function; Dorsal-ventral neural tube patterning; zebrafish development.