Mary Lou Vallano, PhD

Mary Lou Vallano, PhD
Appointed 06/15/85
4601 Institute For Human Performance
505 Irving Ave.
Syracuse, NY 13210

315 464-5440

Current Appointments

Hospital Campus

  • Downtown

Research Programs and Affiliations

  • Biomedical Sciences Program
  • Neuroscience Program
  • Neuroscience and Physiology
  • Physiology Program
  • Research Pillars

Education & Fellowships

  • Postdoctoral Fellow: Yale University School of Medicine
  • PhD: Rutgers University, 1979

Research Interests

  • Neuronal survival and development.


Link to PubMed External Icon (Opens new window. Close the PubMed window to return to this page.)

Research Abstract

Neuronal survival and development.

Modification of synaptic neurotransmission at glutamatergic synapses and activation of Ca2+-dependent second messenger systems contribute to the processes of learning and memory, neuronal survival and differentiation. In addition, these systems play important roles in the neuronal dysfunction that is observed following stroke and ischemia, focal epilepsies and Alzheimer’s disease. Our research program is focused on analysis of the expression and functional responsiveness of distinct excitatory amino acid receptors (NMDA subtypes), modulation of responses by Ca+2-dependent protein kinases, and examination of the roles of these receptors and kinases in neuronal survival and differentiation. Dissociated neuronal cultures and knockout mice are used as model systems.

Selected References:

Gerber, A. M., Beaman-Hall, C. M., Mathur, A. and Vallano, M. L. Reduced blockade by extracellular Mg2+ is permissive to NMDA receptor activation in cerebellar granule neurons that model a migratory phenotype. J. Neurochem. 114:191-202, 2010.

Bui C. J., McGann A. C., Middleton F. A., Beaman-Hall C. M. and Vallano M. L. Transcriptional profiling of depolarization-dependent alterations in primary cultures of developing granule neurons. Brain Res. 1119: 13-25, 2006.

Gerber, A. and Vallano, M. L. Structural properties of the NMDA receptor and the design of neuroprotective therapies. Mini-Rev. Med. Chem. 6:109-120, 2006.

Vallano, M. L., Beaman-Hall, C. M., Bui, C. J. and Middleton F. A.. Depolarization and Ca2+ downregulate CB1 receptors and CB1-mediated signaling in cerebellar granule neurons. Neuropharmacol. 50:651-660, 2006.

Monaco E. A. III and Vallano M. L. Roscovitine triggers excitotoxicity in cultured granule neurons by enhancing glutamate release. Mol. Pharmacol. 68: 1331-1342, 2005.

Tremper-Wells, B. and Vallano, M. L. Nuclear calpain regulates Ca2+-dependent signaling via proteolysis of nuclear CaMKIV in neurons. J. Biol. Chem. 280: 2165-2175, 2005.

Monaco, E. A. III and Vallano, M. L. Role of protein kinases in neurodegenerative disease: cyclin-dependent kinases in Alzheimer's disease. Frontiers in Biosciences 10: 143-159, 2005.

Tremper-Wells, B. and Vallano, M. L. Nuclear calpain regulates Ca2+-dependent signaling via proteolysis of nuclear CaMKIV in cultured neurons. J. Biol. Chem. 280:2165-2175, 2005.

Choi, J. Y., C.M. Beaman-Hall, C. M. and Vallano, M. L. Granule neurons in cerebellum express distinct splice variants of the inositol trisphosphate receptor that are modulated by calcium. Amer. J. Physiol. Cell 287:C971-C980, 2004.

Faculty Profile Shortcut:
Eric Wohlford

Eric Wohlford

Eric Wohlford received a 2012 travel award from the American Society of Tropical Medicine and Hygiene and spent two months in Kenya working in the lab of Rosemary Rochford, PhD, professor and chair of Upstate’s Department of Microbiology & Immunology. Eric studied the effects of malaria on B cells (producers of antibodies that fight infection) and Epstein-Barr Virus infection in the region. “Tropical medicine is unique, in that small, focused improvements in patient care make dramatic improvements in the well-being of patients,” he said.

Read More >

Download the MD/PhD 2014-15 Brochure. PDF document