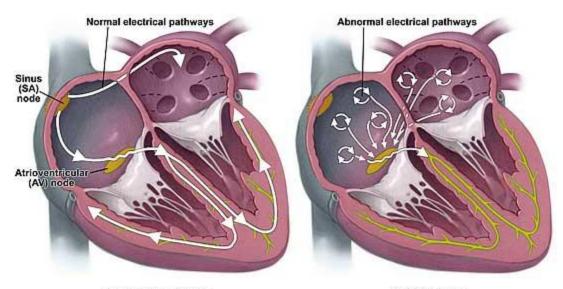
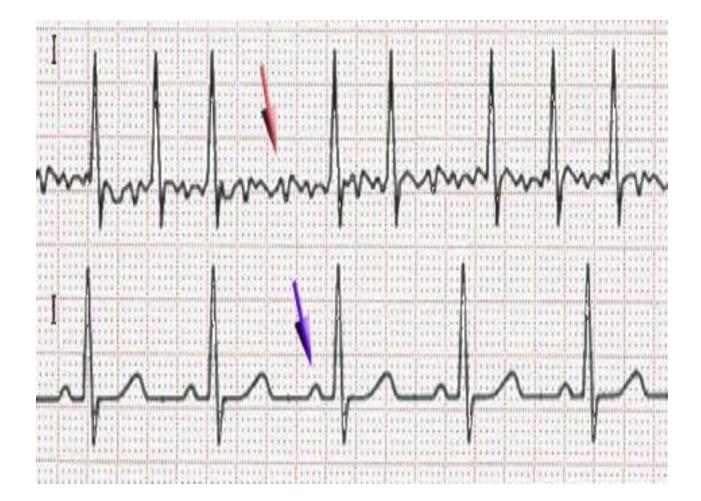
Atrial Fibrillation


July 2016

What is Atrial Fibrillation?

- Chaotic electrical activity in the upper chambers (atria) of the heart
- The erratic signals reaching the AV node result in the irregular rhythm characteristic of atrial fibrillation



Normal sinus rhythm

Atrial fibrillation

What Causes Atrial Fibrillation?

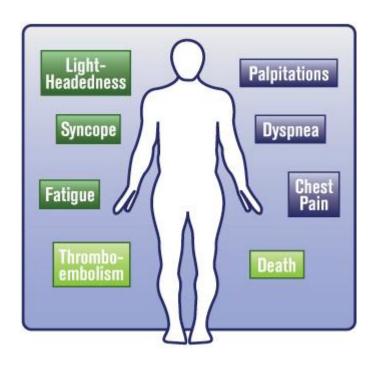
- High Blood Pressure
- Abnormal Heart Valves
- Congenital Heart Defects
- Overactive Thyroid
- Exposure to stimulants
 - Medications, caffeine,tobacco or alcohol

- Sick sinus syndrome
- Emphysema or other lung disease
- Previous heart surgery
- Viral infections
- Physiologic Stress (surgery or illness)
- Sleep Apnea

What Causes Atrial Fibrillation?

- Some people who have atrial fibrillation don't have any heart defects or damage, a condition called lone atrial fibrillation
 - In lone atrial fibrillation, the cause is often unclear, and serious complications are rare.
- In at least 10% of cases, no underlying heart problem is found

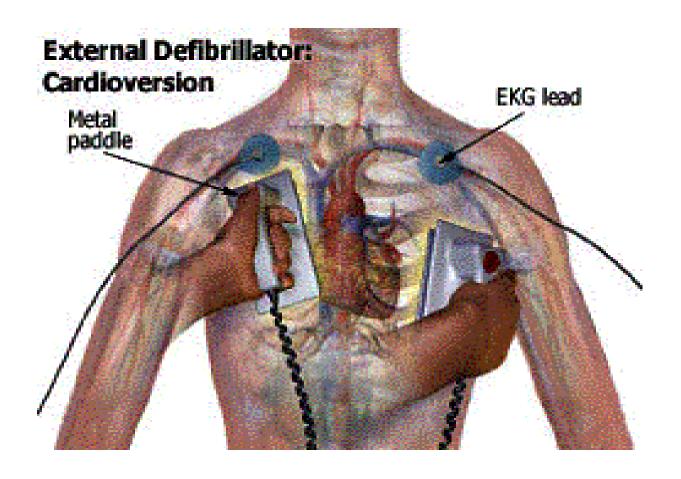
Numbers


- In the US at present there are about 5 million people with atrial fibrillation
- Atrial fibrillation results in
 - 5 fold increase in the risk of stroke
 - 3 fold increase in the risk of heart failure
 - 2 fold increase in the risk of death
- Risk of atrial fibrillation increase with age, 8% of people over 80 have AF

Why is AF a Problem?

- Loss of normal control of heart rate
- Most often atrial fibrillation presents with a very fast heart rate
- Can lead to heart failure

Why is AF a Problem?


- People with AF usually have a significantly increased risk of stroke
 - up to 7 times that of the general population
- Stroke risk increases during AF because blood may pool and form clots in the poorly contracting atria and especially in the left atrial appendage (LAA).

How to Manage AF

- The question of rhythm control versus rate control
- Rhythm control is accomplished by medications, electricity and/or surgery
- Rate control is achieved through medications or a procedure
- Clot prevention

Cardioversion

Cardioversion

O NorthPoint Domain

Cardioversion

- Conversion of rhythm to normal
- Electrical shock
- Medications that alter conduction through the cardiac cells

AFFIRM

- The AFFIRM study also showed no difference in risk of stroke in patients who have converted to a normal rhythm with antiarrhythmic treatment, compared to those who have only rate control
- Must be individualized to patient and cause

Rate Control

- Medications
 - Interfere with conduction through the AV node
 - Beta blockers
 - · Metoprolol, atenolol
 - Calcium channel blockers
 - Verapamil, diltiazem
 - Digoxin

Anticoagulation

- Clot prevention
- Aspirin
 - Lower risk
- Coumadin or warfarin
 - INR 2 to 3
- Newer agents

Pradaxa (Dabigatran)

- Pradaxa is in a class of medications known as a direct thrombin inhibitor
- Not a candidate for Pradaxa if
 - you are 75 years of age or older
 - History of kidney problems

Xarelto (Rivaroxaban)

- Direct factor Xa inhibitor
- Taken once a day with evening meal
- Dose reduced based on kidney function

Eliquis (Apixaban)

- Direct factor Xa inhibitor
- Taken twice a day
- Dose reduction if 2 of 3 are true:
 - Age more than 80
 - Weight less than 60 kg
 - Creatinine more than 1.5

Savaysa (Edoxaban)

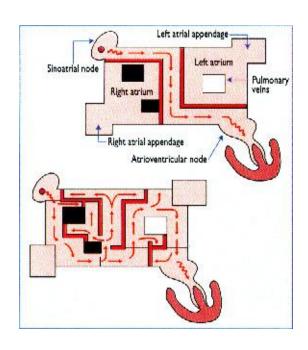
- Direct factor Xa inhibitor
- Taken once a day
- Dose adjusted for kidney function

CHADS2

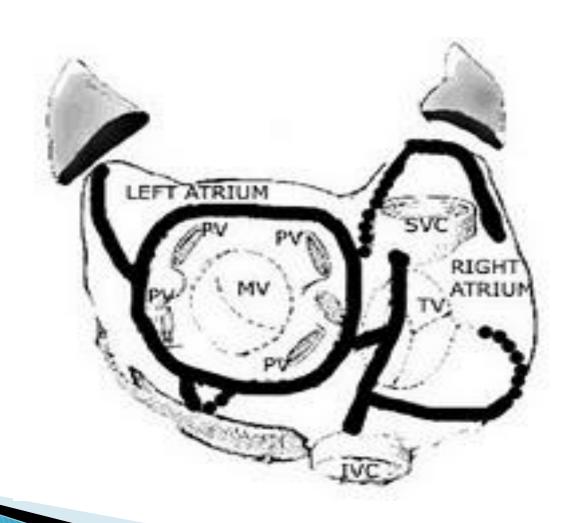
Condition	Points
CHF	1
Hypertension	1
Age ≥ 75	1
Diabetes	1
Prior Stroke or TIA	2

Annual Stroke Risk

CHADS2 Score	Stroke Risk %	95% CI
0	1.9	1.2-3.0
1	2.8	2.0-3.8
2	4.0	3.1–5.1
3	5.9	4.6–7.3
4	8.5	6.3–11.1
5	12.5	8.2–17.5
6	18.2	10.5–27.4

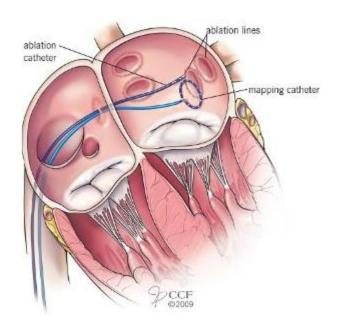

Rhythm Control

- Medications typically alter the electrical currents in the cardiac cells
- Trying to prevent the rapid conduction needed for atrial fibrillation to occur
- Anti-arrhythmics can become Proarrhythmics


Rhythm Control

- There are several types of rhythm control medications, including:
 - procainamide (Pronestyl)
 - disopyramide (Norpace)
 - flecainide acetate (Tambocor)
 - propafenone (Rythmol)
 - sotalol (Betapace)
 - dofetilide (Tikosyn)
 - amiodarone (Cordarone)

Maze Procedure



Maze Procedure

Success Rate

- Present Modified Maze procedure
 - Greater than 90% success rate after 5 years
 - Studies varied depending on procedure type with results of 88 to 91% after 12 months

Catheter Ablation Success Rates

- Define success
 - With or without continued medication
- Type of atrial fibrillation Paroxysmal vs. persistent
- Initial multicenter data (2005)
 - · 1995 2002
 - · 52%
- Second survey (2003 2006)
 - 70% without drugs and symptom free

Catheter ablation

- Now a standard definition of success
 - Freedom from atrial fibrillation, atrial flutter and atrial tachycardia
 - No antiarrhythmic drugs
 - Followed for 12 months
 - Holter monitoring
- Blanking period of 3 months
- Voluntary use
- ▶ 80 to 85% success rates are quoted

