Graduate Studies Faculty

Mariano S Viapiano, PhD

Mariano S Viapiano, PhD
Appointed 04/01/16
4604 Institute For Human Performance (IHP)
505 Irving Ave.
Syracuse, NY 13210

315 464-7967

Current Appointments

Hospital Campus

  • Downtown

Research Programs and Affiliations

  • Biomedical Sciences Program

Education & Fellowships

  • Additional Training: Yale University School of Medicine, 2006, Neurobiology
  • Additional Training: University of Sao Paulo School of Medicine, Sao Paulo, Brazil, 2001, Neuropharmacology
  • PhD: University of Buenos Aires, Argentina, 1998, Neuroscience
  • BS: University of Buenos Aires, Argentina, 1993, Molecular Biology

Previous Appointments

  • Harvard Medical School, 2012–2016
  • Brigham and Women's Hospital, 2012–2016
  • Ohio State University College of Medicine, 2006–2012
  • Yale University School of Medicine, 2001–2006

Clinical Interests

  • Adult brain cancer; pediatric brain cancer; brain metastases; neurodevelopmental disorders

Education Interests

  • Cancer biology; cancer immunology; malignancies of the central nervous system

Research Interests

  • Brain cancer therapies; tumor microenvironment; tumor invasion; extracellular matrix; nano-therapeutics; immunotherapies

Associations/Memberships

  • Argentine Association for Experimental Pharmacology
  • Society for Neuro-Oncology
  • American Society for Matrix Biology
  • American Association for Cancer Research (AACR)
  • Society for Neuroscience (SFN)
  • Society for Clinical and Translational Science
  • International Society for Neurochemistry

Languages Spoken (Other Than English)

  • Spanish
  • Portuguese

Publications

Link to PubMed External Icon (Opens new window. Close the PubMed window to return to this page.)

Research

Our laboratory studies malignant brain cancers and the responses of normal cells in the brain when they interact with tumor cells. This allows us to understand how the neural microenvironment reacts to a tumor and may, in fact, help that tumor grow and disseminate.

A major area of our research is focused on the neural extracellular matrix (ECM), which is a scaffold of molecules that surround all normal cells in the brain and the malignant cells in brain cancers. We try to understand how changes in the ECM can lead to neural injury, tumor invasion, and alterations in the development of the nervous system. This research has allowed us to design reagents to target molecules in the brain microenvironment, which we are developing as diagnostic and therapeutic agents for brain cancers.

Some of the broad questions that we try to answer in our lab include:

-     How do brain tumors change the structure of the ECM and the behavior of normal cells in the brain?

-     Can we disrupt tumor invasion in the brain and expose the malignant cells to become more sensitive to therapies?

-     Can we manipulate the neural ECM to reach brain tumor cells scattered in the brain?

-     Are there mechanisms triggered by ECM proteins that make tumor cells more resistant to therapies and neural damage more persistent?

To answer these questions, our lab is fully set-up to do cellular and molecular biology, tissue analysis and pre-clinical studies. Some of the techniques that we use in the lab include: production and analysis of artificial tissue scaffolds, cultures of tissue biopsies and cell lines, intracranial surgery, viral design and transduction, time-lapse confocal microscopy, glyco-chemistry, immunochemistry, proteomics and molecular genetics.

figure1

Figure 1: Glioblastoma cells (green) migrating around a major blood vessel (red) in the brain

figure2

Figure 2: An extracellular matrix protein (green fibers) produced by glioma cells wraps around blood vessels (red) to help tumor cells scatter along capillaries.

figure3

Figure 3: Nanoparticles (green dots) designed against a protein on the surface of cancer cells. The particles are tumor-specific and do not bind to normal cells (red)

figure4

Figure 4: Novel synthetic scaffolds ("nanofibers") used to analyze the dispersion of tumor cells in vitro

figure5

Figure 5: Engineered tumor cells produce tiny fibrils on the cell surface (green) that enhance adhesion and promote metastasis

 

Recent Publications:

Book Chapters:

Viapiano MS, Lawler SE. Malignant glioma microenvironment. In: Youmans and Winn Neurological Surgery, 7th Ed., pp 814-824 (H. R. Winn, Ed). Elsevier, PA (2016)

Sinyuk M, Lathia JD, Viapiano MS. Characterization and analysis of extracellular matrix in malignant brain tumors and their cellular derivatives. In: Neuromethods: Extracellular Matrix, pp 113-138 (J. Leach and E. Powell, Eds). Humana Press, NJ (2015)

Articles:

Nandhu MS, Kwiatkowska A, Bhaskaran V, Hayes JL, Hu B, Viapiano MS. Tumor-derived fibulin-3 activates proinvasive NF-kappa B in glioblastoma cells and their microenvironment. Oncogene. 2017 (in press) doi: 10.1038/onc.2017.109

Presley K, Hwang J, Cheong S, Tilley R, Collins J, Viapiano MS, Lannutti JJ. Nanoscale upconversion for oxygen sensing. Mater. Sci. Eng. C (2017) 70 (Pt 1): 76-84. PMID: 27770952

Zhao Y, Tabassum S, Piracha S, Nandhu MS, Viapiano MS, Roblyer D. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI). Biomed. Opt. Express. (2016) 7: 2373-2384. PMID: 27375952

Cho CF, Lee K, Speranza MC, Bononi FC, Viapiano MS, Luy LG, Weissleder R, Chiocca EA, Lee H, Lawler SE. Design of a microfluidic chip for magnetic-activated sorting of one-bead-one-compound libraries. ACS Comb. Sci. (2016) 18: 271-278. PMID: 27124678

Ropper AE, Zeng X, Haragopal H, Anderson JE, Aljuboori Z, Han I, Abd-El-Barr M, Lee HJ, Sidman RL, Snyder EY, Viapiano MS, Kim SU, Chi JH, Teng YD. Targeted Treatment of Experimental Spinal Cord Glioma With Dual Gene-Engineered Human Neural Stem Cells. Neurosurgery. (2016) 79: 481-491. PMID: 26671631

Xue R, Nelson MT, Teixeira SA, Viapiano MS, Lannutti JJ. Cancer cell aggregate hypoxia visualized in vitro via biocompatible fiber sensors. Biomaterials (2016) 76: 208-217. PMID:26524540

Xue R, Ge C, Richardson K, Palmer A, Viapiano M, Lannutti JJ. Microscale Sensing of Oxygen via Encapsulated Porphyrin Nanofibers: Effect of Indicator and Polymer "Core" Permeability. ACS Appl. Mater. Interfaces. (2015) 7: 8606-8614. PMID:25850567

Long PM, Tighe SW, Driscoll HE, Fortner KA, Viapiano MS, Jaworski DM. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J. Cell Physiol. (2015) 230: 1929-1943. PMID:25573156

Nandhu MS, Hu B, Cole SE, Erdreich-Epstein A, Rodriguez-Gil DJ, Viapiano MS. Novel paracrine modulation of Notch-DLL4 signaling by fibulin-3 promotes angiogenesis in high-grade gliomas. Cancer Res. (2014) 74:5435-5448. PMID:25139440

Roth AD, Elmer J, Harris DR, Huntley J, Palmer AF, Nelson T, Johnson JK, Xue R, Lannutti JJ, Viapiano MS. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol. Prog. (2014) 30: 1214-1220. PMID:25044995

Junghans A, Waltman MJ, Smith HL, Pocivavsek L, Zebda N, Birukov K, Viapiano M, Majewski J. Understanding dynamic changes in live cell adhesion with neutron reflectometry. Mod. Phys. Lett B. (2014) 28: 1430015/1 - 1430015/9. PMID:25705067

Dwyer CA, Bi WL, Viapiano MS, Matthews RT. Brevican knockdown reduces late-stage glioma tumor aggressiveness. J. Neurooncol. (2014) 120:63-72. PMID:25052349

Tsen AR, Long PM, Driscoll HE, Davies MT, Teasdale BA, Penar PL, Pendlebury WW, Spees JL, Lawler SE, Viapiano MS, Jaworski DM. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma. Intl. J. Cancer (2014) 134: 1300-1310. PMID: 23996800

Rao SS, Lannutti JJ, Viapiano MS, Sarkar A, Winter JO. Toward 3D biomimetic models to understand the behavior of glioblastoma multiforme cells. Tissue Eng Part B Rev. (2014) 20: 314-3278. PMID: 24044776

Xue R, Behera P, Viapiano MS, Lannutti JJ. Polydimethylsiloxane-core Polycaprolactone-shell nanofibers as biocompatible, real-time oxygen sensors. Sensors and Actuators B. Chem. (2014) 192: 697-707. PMID: 25006274

Faculty Profile Shortcut: http://www.upstate.edu/faculty/viapianm
Top