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Top i ca l Rev iew

Cell physiology of cAMP sensor Epac
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Epac is an acronym for the exchange proteins activated directly by cyclic AMP, a family of

cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs) that mediate protein kinase A

(PKA)-independent signal transduction properties of the second messenger cAMP. Two variants

of Epac exist (Epac1 and Epac2), both of which couple cAMP production to the activation of Rap, a

small molecular weight GTPase of the Ras family. By activating Rap in an Epac-mediated manner,

cAMP influences diverse cellular processes that include integrin-mediated cell adhesion, vascular

endothelial cell barrier formation, and cardiac myocyte gap junction formation. Recently,

the identification of previously unrecognized physiological processes regulated by Epac has

been made possible by the development of Epac-selective cyclic AMP analogues (ESCAs).

These cell-permeant analogues of cAMP activate both Epac1 and Epac2, whereas they fail to

activate PKA when used at low concentrations. ESCAs such as 8-pCPT-2′-O-Me-cAMP and

8-pMeOPT-2′-O-Me-cAMP are reported to alter Na+, K+, Ca2+ and Cl− channel function,

intracellular [Ca2+], and Na+–H+ transporter activity in multiple cell types. Moreover, new

studies examining the actions of ESCAs on neurons, pancreatic beta cells, pituitary cells and

sperm demonstrate a major role for Epac in the stimulation of exocytosis by cAMP. This

topical review provides an update concerning novel PKA-independent features of cAMP signal

transduction that are likely to be Epac-mediated. Emphasized is the emerging role of Epac

in the cAMP-dependent regulation of ion channel function, intracellular Ca2+ signalling, ion

transporter activity and exocytosis.
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The discovery and characterization of a novel cAMP signal
transduction mechanism that uses the Epac family of
cAMP ‘sensors’ to regulate multiple cellular functions has
dramatically reinvigorated interest in cyclic nucleotide
research (Bos, 2003). Actions of cAMP, which at one
time were thought to be mediated exclusively by protein
kinase A (PKA), must now be re-evaluated in the light
of an accumulating body of evidence that indicates
a likely role for Epac in cell physiology (Holz, 2004;
Seino & Shibasaki, 2005). By serving as a cAMP-binding
protein with intrinsic guanine nucleotide exchange
factor (GEF) activity, Epac couples cAMP production
to the activation of Rap, a small molecular weight
GTPase of the Ras family (Fig. 1). Cellular processes
stimulated as a consequence of the Epac-mediated
activation of Rap include integrin-mediated cell adhesion
(Rangarajan et al. 2003), vascular endothelial cell barrier
formation (Fukuhara et al. 2005; Kooistra et al. 2005),
cardiac gap junction formation (Somekawa et al. 2005),

mitogen-activated protein kinase (MAPK) signalling
(Wang et al. 2006), hormone gene expression (Gerlo et al.
2006; Lotfi et al. 2006), and phospholipase C-epsilon
(PLC-ε) activation (Schmidt et al. 2001). Thus, Epac is
an exchange protein activated directly by cyclic AMP (de
Rooij et al. 1998; Rehman et al. 2006), or in an alternative
terminology, a cyclic AMP-regulated guanine nucleotide
exchange factor (cAMPGEF) (Kawasaki et al. 1998; Ozaki
et al. 2000).

The Rap GTPases are not the only interesting molecules
with which Epac interacts (Fig. 1). Epac is also reported
to interact with Ras GTPases (Li et al. 2006; De Jesus
et al. 2006), microtubule-associated proteins (Yarwood,
2005), secretory granule-associated proteins such as
Rim2 and Piccolo (Ozaki et al. 2000; Fujimoto et al.
2002; Shibasaki et al. 2004a,b), and the sulphonylurea
receptor-1 (SUR1), a subunit of ATP-sensitive K+ channels
(Ozaki et al. 2000; Shibasaki et al. 2004a,b; Kang et al.
2006). Some of these interactions may underlie the
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recruitment of Epac to an intracellular compartment that
is rich in Rap GTPase. Alternatively, Epac may act as
a multifunctional protein, one in which cAMP exerts
its effects not simply by promoting guanyl nucleotide
exchange on Rap, but by allosterically regulating key
molecules involved in cell physiology. Intriguingly, newly
published findings demonstrate Epac-mediated actions of
cAMP that influence Na+, K+, Ca2+, and Cl− channel
function, [Ca2+]i, Na+–H+ and Na+–K+ transporter
activity, and exocytosis in multiple cell types (see below).

cAMP-binding properties of Epac

Epac1 is also known as cAMPGEF-I, whereas Epac2
is referred to as cAMPGEF-II (Fig. 2). Epac1 is most
prominent in the brain, heart, kidney, pancreas, spleen,
ovary, thyroid and spinal cord, whereas Epac2 is less
ubiquitous and is most prominent in discreet regions
of the brain, as well as the adrenal glands, liver and
pancreatic islets of Langerhans (de Rooij et al. 1998;
Kawasaki et al. 1998; Ozaki et al. 2000; Ueno et al. 2001).
Epac1 contains a single cAMP-binding domain, whereas
Epac2 contains two – a lower-affinity cAMP-binding
domain of uncertain significance designated as ‘A’, and
a higher-affinity cAMP-binding domain that is physio-
logically relevant and which is designated as ‘B’. The K d for
binding of cAMP to Epac1 is 2.8 μm, whereas for Epac2
the ‘A’ and ‘B’ binding sites exhibit a K d of 87 and 1.2 μm,
respectively (de Rooij et al. 2000; Christensen et al. 2003).
Thus, both Epac1 and Epac2 bind cAMP in vitro with an
affinity similar to that of the PKA holoenzyme (K d 2.9 μm;
Dao et al. 2006).

Given that Epac is activated in vitro by micromolar
concentrations of cAMP, some uncertainty existed as to
whether the intracellular concentration of cAMP would
be high enough to activate Epac. To address this issue,
Epac-based cAMP sensors exhibiting Förster resonance
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Figure 1. Signal transduction properties of Epac
When bound to cAMP, Epac catalyses the exchange of
GDP for GTP on Rap GTPase. The activated form of
Rap-GTP is then capable of promoting integrin-
mediated cell adhesion, gap junction formation and
ERK1/2 MAPK-mediated protein phosphorylation.
Activated Rap also stimulates phospholipase C-epsilon
(PLC-ε) which hydrolyses PIP2 to generate diacylglycerol
(DAG), and the Ca2+-mobilizing second messenger IP3.
As illustrated, some actions of Epac may also be Rap
independent. These actions of Epac may involve its
interaction with microtubule-associated proteins, the
Ras GTPases, secretory granule-associated proteins
(Rim2, Piccolo), and the SUR1 subunit of KATP channels.
Abbreviations: G protein coupled receptor, GPCR;
cytoskeletal protein-associated with the active zone,
CAZ; ATP-sensitive K+ channel, KATP.

energy transfer (FRET) have been developed. These
sensors bind cAMP with an affinity similar to endogenous
Epac. When expressed in living cells, Epac-based FRET
sensors are activated by agents that stimulate cAMP
production (DiPilato et al. 2004; Nikolaev et al. 2004;
Ponsioen et al. 2004; Landa et al. 2005). For example,
one such sensor (Epac1-camps) detects oscillations of
[cAMP]i that occur in MIN6 insulin-secreting cells
(Fig. 3). Thus, there is good reason to believe that micro-
molar fluctuations of [cAMP]i do occur in living cells,
and that such fluctuations are coupled to the activation of
Epac.

Development of Epac-selective cAMP analogues

An important advance is the synthesis and characterization
of cAMP analogues that are cell permeant and which
activate Epac but not PKA when used at low concentrations
(Enserink et al. 2002; Kang et al. 2003). Selective activation
of Epac is conferred by the substitution of an -O-Me
group for the -OH group normally present at the 2′

carbon of the ribose moiety of cAMP (cf. Fig. 4A and
B). Although this 2′-O-Me substitution impairs the inter-
action of cAMP with PKA, it allows the 2′-O-Me cAMP
analogue to act as an agonist at Epac. Epac-selective cAMP
analogues (ESCAs) include 8-pCPT-2′-O-Me-cAMP
(Fig. 4B), 8-pMeOPT-2′-O-Me-cAMP (Fig. 4C), and
8-pHPT-2′-O-Me-cAMP (not shown). These ESCAs
provide unique pharmacological tools with which to assess
potential PKA-independent actions of cAMP that may be
Epac mediated.

Validation that an ESCA acts via Epac can be
achieved by demonstrating a biological activity of
8-pCPT-2′-O-Me-cAMP that is not mimicked by the
PKA-selective cAMP analogue 6-Bnz-cAMP (Fig. 4D).
The action of 8-pCPT-2′-O-Me-cAMP should also
be insensitive to inhibitors of PKA catalytic activity
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(H-89, KT5720, PKI), and moreover, the action
of 8-pCPT-2′-O-Me-cAMP should be insensitive to
Rp-cAMP, a cAMP analogue that blocks the activation
of PKA by cAMP, but which does not prevent the
activation of Epac in living cells (Dostmann et al. 1990;
Eliasson et al. 2003; Kang et al. 2003, 2006; Rangarajan
et al. 2003; Branham et al. 2006). Ruling out a role for
PKA is necessitated by the fact that high concentrations
(> 100 μm) of 8-pCPT-2′-O-Me-cAMP can activate PKA,
although with low efficacy (Christensen et al. 2003).

One impediment to the analysis of Epac signal
transduction is that no specific pharmacological inhibitors
exist with which to selectively block the binding of cAMP
to Epac1 or Epac2. Furthermore, it is not yet possible to
selectively inhibit the catalytic (GEF) function of Epac.
To circumvent this problem, a molecular approach is
available in which an Epac-mediated action of cAMP is
inferred by demonstrating the failure of an ESCA to act
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Figure 2. Molecular properties of the Epac family of cAMPGEFs
Epac1 is comprised of 881 amino acids (molecular mass 100 kDa), whereas Epac2 is comprised of 1011 amino acids
(molecular mass 110 kDa). In the absence of cAMP, the regulatory region of Epac inhibits the guanine nucleotide
exchange (GEF) function of the catalytic region. Binding of cAMP to Epac relieves this autoinhibition. The DEP
domain of Epac located within the regulatory region contains sequence homologies to disheveled, Egl I0 and
pleckstrin. A Ras exchange motif (REM) and a CDC25 homology domain are found within the catalytic region.
These two variants of Epac are coded for by two distinct genes, and evidence exists for both shorter and longer
forms of the proteins (not shown).

in cells transfected with a dominant-negative Epac. These
mutant forms of Epac fail to bind cAMP (Ozaki et al. 2000;
Kang et al. 2001, 2005, 2006; Mei et al. 2002). Conversely,
the action of an ESCA may be shown to be reproduced by
a constitutively active Epac that is truncated to remove the
cAMP-binding domain responsible for autoinhibition of
the exchange factor’s catalytic function (Morel et al. 2005).
Although Epac knock-out mice are not yet reported to
be available, it is possible to knock-down the expression
of Epac using antisense oligodeoxynucleotides or small
interfering RNA (siRNA). For the Epac2 expressed
in pancreatic beta cells, the use of antisense
oligodeoxynucleotides has revealed an important
role for this exchange factor in the cAMP-dependent
stimulation of insulin secretion (Kashima et al. 2001;
Eliasson et al. 2003). For Epac1, the use of siRNA has
revealed its role in the formation of endothelial cell tight
junctions (Kooistra et al. 2005).
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Epac mediates the cAMP-dependent regulation of ion
channel function

A previously unrecognized role for Epac in the
cAMP-dependent regulation of ion channel function
is now known to exist. One such example is the
Epac-mediated inhibition of ATP-sensitive K+ channels
(KATP channels), as measured in pancreatic beta cells
(Kang et al. 2006). Under conditions in which beta
cells are dialysed with a low concentration of ATP,
8-pCPT-2′-O-Me-cAMP inhibits KATP channel activity, an
effect not observed following transfection of cells with a
dominant-negative Epac1. Interestingly, both Epac1 and
Epac2 are shown to co-immunoprecipitate with SUR1,
a subunit of the KATP channel (Kang et al. 2006). Thus,
it has been proposed that Epac serves as an accessory
subunit of KATP channels, possibly as a consequence
of the binding of Epac to nucleotide binding fold-1
(NBF-1) of SUR1 (Ozaki et al. 2000; Shibasaki et al.
2004a,b; Kang et al. 2006). In one model proposed
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Figure 3. Detection of [cAMP]i using Epac1-camps
The [cAMP]i was measured in a single MIN6 insulin-
secreting cell transfected with Epac1-camps, a cAMP
sensor that incorporates the cyclic nucleotide-binding
domain of Epac1 fused at its C-terminus with ECFP
(FRET donor), and at its N-terminus with EYFP (FRET
acceptor). Emitted light was measured at 485 and
535 nm in response to excitation at 440 nm (Landa
et al. 2005). An increase of [cAMP]i produces a
decrease of FRET. This action of cAMP is measured as a
decrease of 535 nm emitted light accompanied by an
increase of 485 nm emitted light. A, a MIN6 cell
equilibrated in saline containing 2 mM glucose, and
then challenged with a solution containing 20 mM

glucose with or without 20 mM of the K+ channel
blocker tetraethylammonium ion (TEA). Application of
20 mM glucose alone produced a small increase of
[cAMP]i, whereas larger oscillations of [cAMP]i were
observed upon introduction of TEA to the bath
solution. TEA initiates oscillatory electrical activity in this
cell type, an effect accompanied by oscillations of both
[Ca2+]i and [cAMP]i (Landa et al. 2005). B, data
presented in panel A re-plotted as the relative ratio of
485/535 nm emitted light versus time. The complete
experiment encapsulating 2160 s is illustrated.

by Kang and co-workers (Fig. 5), SUR1 recruits Epac
to the plasma membrane where Epac mediates the
cAMP-dependent activation of Rap GTPase (Kang et al.
2006). Once activated, Rap stimulates PLC-ε (Schmidt
et al. 2001), a phospholipase that catalyses hydrolysis of
membrane-bound phosphatidylinositol 4,5-bisphosphate
(PIP2). As PIP2 stimulates the activity of KATP channels
by reducing the channel’s sensitivity to ATP (Baukrowitz
et al. 1998; Shyng & Nichols, 1998), an ability of Epac to
promote PIP2 hydrolysis may explain the inhibitory action
of cAMP at beta-cell KATP channels.

In rat chromaffin cells there also exists Epac-mediated
actions of cAMP to influence ion channel activity. A 2-day
exposure of chromaffin cells to 8-pCPT-2′-O-Me-cAMP
increases the low-voltage-activated T-type Ca2+ current,
presumably by up-regulating the expression of CaV3.1
Ca2+ channel subunits (Novara et al. 2004). Increased
T-type current lowers the threshold for action potential
generation in this cell type, thereby facilitating exocytosis
of adrenaline (epinephrine). Since secreted adrenaline is an
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Figure 4. Chemical structures of cAMP analogues
Illustrated are the structures for cAMP (A), 8-pCPT-2′-O-Me-cAMP (B), 8-pMeOPT-2′-O-Me-cAMP (C), and
6-Bnz-cAMP (D). Both 8-pCPT-2′-O-Me-cAMP and 8-pMeOPT-2′-O-Me-cAMP are Epac selective, whereas
6-Bnz-cAMP is PKA selective. The naturally occurring second messenger cAMP activates both Epac and PKA.
A chlorophenylthio substitution introduced at the 8′ position of cAMP (B and C) dramatically increase the
lipophilicity of the cAMP analogues, thereby rendering them cell-permeant. Although not shown, an Sp- isomer
of 8-pCPT-2′-O-Me-cAMP is also available. It activates Epac, whereas the Rp- isomer does not.

autocrine that stimulates cAMP production by activating
chromaffin cell beta adrenergic receptors, there may exist
Epac-mediated actions of cAMP that underlie ‘chromaffin
cell plasticity’ and which dictate the level of expression of
CaV3.1 in this cell type (Novara et al. 2004).
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Figure 5. cAMP may inhibit KATP channel function in an Epac-mediated manner
Nucleotide-binding fold-1 (NBF-1) of the SUR1 subunit of KATP channels may recruit Epac to the plasma membrane.
Binding of cAMP to Epac may then allow for the activation of plasma membrane-associated Rap GTPase. The
activated form of Rap stimulates PLC-ε, and the PLC-ε-catalysed hydrolysis of PIP2 results in the closure of KATP

channels, possibly as a consequence of the increased sensitivity of these channels to ATP. Note that ATP inhibits
KATP channel function by virtue of its interaction with the Kir6.2 subunit of the channel. In contrast, the activity of
KATP channels is stimulated by Mg2+-ADP, acting at the SUR1 subunit. Abbreviations: WA and WB, Walker A and
Walker B motifs; TMO, TM1 and TM2, transmembrane clusters; NBF-2, nucleotide-binding fold-2.

Does Epac influence the activity of ion channels
in non-excitable cells? The answer seems to be yes.
8-pCPT-2′-O-Me-cAMP increases the channel open
probability (Po) of amiloride-sensitive Na+ channels
(ENaC) expressed in rat pulmonary epithelial cells
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(Helms et al. 2006). This effect is reproduced by the
cAMP-elevating neurotransmitter dopamine acting via D1

receptors. Interestingly, the stimulatory effect of cAMP on
recombinant ENaC expressed in Xenopus oocytes is not
abolished by mutagenesis of PKA phosphorylation sites
in the cytosolic domain of ENaC (Yang et al. 2006). In
contrast, the action of cAMP is reduced by mutagenesis of
extracellular signal-regulated kinase (ERK) motifs. Since
the Epac-mediated activation of Rap GTPase is reported
to stimulate ERK MAPK (Wang et al. 2006), it appears that
ERK-mediated phosphorylation of ENaC may explain how
cAMP, acting via Epac, stimulates this channel’s function.

One new study of rat hepatocytes demonstrates novel
stimulatory effects of 8-pCPT-2′-O-Me-cAMP on Cl−

channel function (Aromataris et al. 2006). This action
of the ESCA leads to the appearance of an outwardly
rectifying Cl− current with biophysical properties and
Ca2+ dependence identical to that of the Cl− current
activated by cell swelling. Although this same Cl− current
is not activated by the PKA-selective cAMP analogue
N 6-Bnz-cAMP, it is activated by the cAMP-elevating
hormone glucagon, an effect not blocked by inhibitors of
PKA. Since Epac2 is known to be expressed in hepatocytes
(Ueno et al. 2001), it seems likely that it is Epac2 that
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Adenylyl Cyclase
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Figure 6. Epac mediates the Ca2+-mobilizing action of cAMP
The mobilization of Ca2+ from endoplasmic reticulum (ER) Ca2+ stores may be facilitated as a consequence of the
Epac-mediated action of cAMP to promote the opening of intracellular Ca2+ release channels corresponding to
inositol trisphosphate receptors (IP3-R) or ryanodine receptors (RYR). Such an effect of cAMP might be explained
by the ability of Epac to interact directly with the channels. A second possibility is that Epac acts via Rap GTPases
to stimulate protein kinases that phosphorylate and regulate the function of intracellular Ca2+ release channels.
A third possibility is that the Epac-mediated activation of Rap GTPases leads to the stimulation of PLC-ε, which
generates IP3 by hydrolysing PIP2. Abbreviations: GPCR, G protein-coupled receptor; SERCA, sarco-endoplasmic
reticulum ATPase.

mediates the stimulatory effect of glucagon on Cl− channel
function. Whether this effect of glucagon is secondary
to cAMP-dependent activation of a membrane-associated
phospholipase or a MAPK remains to be determined.

A role for Epac in the regulation of intracellular
Ca2+ signalling

Although cAMP promotes Ca2+ influx and intracellular
Ca2+ mobilization in multiple cell types, there is new
evidence that these actions of cAMP are not exclusively
PKA mediated. In pancreatic beta cells, there exists
an Epac-mediated action of 8-pCPT-2′-O-Me-cAMP to
mobilize Ca2+ from intracellular Ca2+ stores (Kang
et al. 2003, 2005). This action of the ESCA promotes
exocytosis (Kang et al. 2003), and it may also up-regulate
mitochondrial ATP production (Tsuboi et al. 2003).
Available information suggests three scenarios by which
the action of 8-pCPT-2′-O-Me-cAMP might be achieved
(Fig. 6). First, Epac might interact directly with intra-
cellular Ca2+ release channels (IP3 receptors, ryanodine
receptors), thereby promoting their opening in response
to Ca2+ or various Ca2+-mobilizing second messengers
(IP3; cADP-ribose; NAADP). Second, Epac might act
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via Rap and ERK to promote the PKA-independent
phosphorylation of these channels, thereby increasing
their sensitivity to Ca2+ or Ca2+-mobilizing second
messengers. Third, Epac might act via Rap to stimulate
PLC-ε, thereby hydrolysing PIP2 and generating IP3.

Modulatory actions of Epac at ryanodine receptor Ca2+

release channels seem likely because newly published
findings demonstrate that in cardiac myocytes there
exists a macromolecular complex consisting of Epac1,
muscle-specific A-kinase anchoring protein (mAKAP),
PKA, cAMP-phosphodiesterase (PDE), and the type-2
isoform (RYR-2) of the ryanodine receptor (Dodge-Kafka
et al. 2005). Thus, it may be speculated that cAMP,
acting via Epac, facilitates the release of Ca2+ from
the cardiac sarcoplasmic reticulum, where RYR-2 is
known to be expressed. In fact, 8-pCPT-2′-O-Me-cAMP
increases the frequency of spontaneous oscillations
of [Ca2+]i in neonatal rat cardiac myocytes (Morel
et al. 2005), and it also increases Ca2+ spark
frequency in adult rat cardiac myocytes (Pereira et al.
2006). Furthermore, ryanodine-sensitive Ca2+-mobilizing
actions of 8-pCPT-2′-O-Me-cAMP exist in mouse
pancreatic beta cells (Kang et al. 2001, 2005), mouse
cerebellar granule cells (Ster et al. 2005), and rat
renal inner medullary collecting duct (IMCD) cells
(Yip, 2006), three cell types that express ryanodine
receptors.

Ion transport processes regulated by Epac

Recently published findings provide evidence for a
role of Epac in the acute inhibitory regulation of
Na+–H+ exchanger 3 (NHE3) transporter activity in
the brush border membrane (BBM) of rodent renal
proximal tubules (Honegger et al. 2006). In this
study, immunocytochemistry of mouse kidney slices
demonstrates co-expression of Epac1 with NHE3
at the BBM, whereas treatment of these slices
with 8-pCPT-2′-O-Me-cAMP (10–100 μm) produces a
concentration-dependent inhibition of NHE3 activity. The
effect of the ESCA is independent of major changes in
the level of NHE3 transporter expression at the plasma
membrane, and it is not associated with PKA-mediated
phosphorylation of NHE3. Although the exact mechanism
by which Epac regulates NHE3 remains to be determined,
it is noteworthy that 8-pCPT-2′-O-Me-cAMP fails
to inhibit NHE3 under conditions in which kidney
slices are treated with PD98059, an inhibitor of
MEK1/2 mitogen-activated protein kinases. This finding
seems to indicate that MEK-mediated phosphorylation
of an as-yet-to-be identified intermediary underlies
Epac-mediated inhibition of NHE3.

Limited information also exists suggesting that Epac
plays a role in the acute stimulation of ATP-dependent
H+–K+ transporter activity in the intercalated Iα cells

of rat renal collecting ducts (Laroche-Joubert et al.
2002). In this cell type, the cAMP-elevating hormone
calcitonin stimulates a H+,K+-ATPase, an effect mimicked
by cAMP, but which is insensitive to an inhibitor of
PKA. Importantly, the intracellular administration of anti-
bodies directed against Epac1, or its downstream effector
Rap, blocks the action of calcitonin. Since the action
of calcitonin is also reduced by U0126, an inhibitor of
MEK1/2, and because calcitonin is shown to increase the
phosphorylation status of the MEK substrate ERK, it is
suggested that there exists in collecting duct cells a cAMP
and Epac-mediated action of calcitonin to activate Rap,
MEK and ERK in a sequential fashion. In this manner,
calcitonin might recruit intracellular vesicles rich in
H+,K+-ATPase to the plasma membrane (Laroche-Joubert
et al. 2002).

Epac links cAMP production to the stimulation
of exocytosis

Studies of cell types as distantly related as sperm, neurons
and endocrine cells provide convincing evidence for a
major role of Epac in the stimulation of exocytosis by
cAMP (Renstrom et al. 1997; Ozaki et al. 2000; Kashima
et al. 2001; Nakazaki et al. 2002; Eliasson et al. 2003; Kang &
Holz, 2003; Shimomura et al. 2004; Chin & Abayasekara,
2004; Ma et al. 2005; Sedej et al. 2005; Branham et al.
2006; Hashiguchi et al. 2006; Liu et al. 2006; Yip, 2006).
For example, 8-pCPT-2′-O-Me-cAMP potentiates the
depolarization-induced exocytosis of large dense core
secretory granules, an effect measured as an increase of
membrane capacitance in voltage-clamped pancreatic beta
cells (Eliasson et al. 2003) and pituitary melanotrophs
(Sedej et al. 2005). These pro-secretagogue actions of
8-pCPT-2′-O-Me-cAMP are selective for exocytosis that
is Ca2+ dependent, and which is initiated by the opening
of voltage-dependent Ca2+ channels. Available evidence
indicates that the action of 8-pCPT-2′-O-Me-cAMP results
from its ability to activate a pool of intracellular Epac2 that
is in close association with, or directly linked to, secretory
granules (Fig. 7).

An Epac-mediated action of cAMP to potentiate
Ca2+-dependent exocytosis also occurs at presynaptic
nerve endings located at the calyx of Held of the
rodent central nervous system (Sakaba & Neher, 2001,
2003; Kaneko & Takahashi, 2004), and at the neuro-
muscular junctions of crayfish (Zhong & Zucker, 2005)
and Drosophila (Cheung et al. 2006). For example, at the
calyx of Held, the cAMP-elevating agent forskolin exerts a
presynaptic action to facilitate evoked transmitter release,
an effect mimicked by 8-Br-cAMP (Sakaba & Neher, 2001).
This action of forskolin is most probably Epac mediated
because it is reproduced by 8-pCPT-2′-O-Me-cAMP,
whereas it is insensitive to inhibitors of PKA (Sakaba &
Neher, 2001, 2003; Kaneko & Takahashi, 2004). More
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detailed electrophysiological analyses provide evidence
that cAMP acts via Epac to increase the probability that
a readily releasable pool (RRP) of synaptic vesicles will
undergo exocytosis in response to depolarization-induced
Ca2+ influx (Sakaba & Neher, 2001, 2003; Kaneko &
Takahashi, 2004). Simultaneously, cAMP may act via
Epac to increase the number of synaptic vesicles available
to undergo exocytosis. Surprisingly, this effect does not
appear to be a generalized action of cAMP to increase
the RRP size. Instead, it is a selective effect specific for
a subpopulation of vesicles, those that exhibit a high
probability of release (Sakaba & Neher, 2001, 2003; Kaneko
& Takahashi, 2004).

What is the molecular basis for such stimulatory actions
of cAMP? Seino and co-workers propose that cAMP exerts
its effects via Epac2, which heterodimerizes with Rim2, a
Rab3A GTPase-interacting molecule previously reported
to play a central role in the regulation of Ca2+-dependent
exocytosis (Fig. 7A). Through an as-yet-to-be defined
mechanism, cAMP may act via Epac2 to enable Rim2
to promote the ‘priming’ of secretory granules, thereby
rendering them release-competent (Ozaki et al. 2000;
Fujimoto et al. 2002; Shibasaki et al. 2004a,b; Seino
& Shibasaki, 2005). Since Rab3A is located on the
cytoplasmic surface of secretory granules docked at the
plasma membrane, its ability to recruit heterodimers of
Rim2 and Epac2 might explain the action of cAMP to

Rab3A
Rim2

Epac2

Rim2

Piccolo

-- cAMP

-- Ca
2+

Rab3A

GTP

GTP

Epac2

ClC-3

sgSUR1

ClC-3

sgSUR1 Epac2

v-H

-ATPase

+

-- cAMP

-- cAMP

SG
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A

B

-- ATP
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-- ATP

-- ADP
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-- ATP
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Figure 7. Interactions of Epac2 with secretory
granule-associated proteins
A, in the model of Seino and co-workers, plasma
membrane SUR1 (pmSUR1), Epac2, Rim2 and Piccolo form
a macromolecular complex that interacts with the
GTP-bound form of Rab3A to regulate the priming and
exocytosis of secretory granules (SG). This model may also
apply to presynaptic nerve endings in which synaptic
vesicles are found in close association with Rim1. B, in the
model of Eliasson and co-workers, Epac2 stimulates
exocytosis by interacting with secretory granule-associated
SUR1 (sgSUR1), and/or pmSUR1. Both sources of SUR1 may
be necessary for the cAMP-dependent regulation of ClC-3
chloride channels. Uptake of Cl− into the secretory granule
facilitates granule acidification and priming mediated by
the v-type H+-ATPase.

increase the size of the RRP of secretory granules available
for exocytosis (Seino & Shibasaki, 2005).

In the special case of pancreatic beta cells, the action
of cAMP to promote exocytosis may also be explained
by the interaction of Epac2 with an intracellular pool
of SUR1 located at or near the secretory granules
(Fig. 7B). This conclusion is reached because the action
of 8-pCPT-2′-O-Me-cAMP to potentiate Ca2+-dependent
exocytosis in beta cells is not observed in SUR1
knock-out mice (Eliasson et al. 2003). In the model
proposed by Eliasson and co-workers, the binding of
8-pCPT-2′-O-Me-cAMP to Epac2 promotes the opening
of ClC-3 chloride channels located in the secretory granule
membrane. 8-pCPT-2′-O-Me-cAMP-induced influx of
Cl− into the secretory granule lumen creates an electro-
motive force that facilitates ATP-dependent H+ uptake
mediated by a v-type H+-ATPase (Barg et al. 2001).
Since SUR1 is expressed not only at the plasma
membrane (pmSUR1), but also within the secretory
granule membrane (sgSUR1) of beta cells (Geng et al.
2003), SUR1-mediated recruitment of Epac2 to the
granules may allow for Epac2-mediated stimulation of
ClC-3 channel function. Simultaneously, Epac2 might act
in a more direct manner to up-regulate the activity of the
v-type H+-ATPase. In summary, these actions of Epac2
would allow for acidification and priming of the granules,
thereby rendering them release-competent.
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Conclusion

As Epac is expressed in numerous cell types, and because
Epac acts as an intermediary linking cAMP production
to plasma membrane phospholipid hydrolysis, it may be
predicted that the activated form of Epac will influence a
broad array of physiological processes, most notably ion
channel function, transporter activity and exocytosis. Of
particular interest to cell physiologists are the high levels
of expression of Epac1 and Epac2 in the heart and brain,
respectively. What is the role of Epac in these excitable
tissues, and which effector molecules in addition to Rap
GTPase are regulated by Epac? Can new drugs be developed
to target the G protein-coupled receptors that activate
Epac, and if so which diseases might be treatable using
these agents? A pharmacological approach of this sort
seems reasonable in view of the demonstrated importance
of Epac to cellular processes underlying immune system
function (Aronoff et al. 2005), neuronal function (Maillet
et al. 2003; Hucho et al. 2005; Robert et al. 2005), endo-
crine function (Holz, 2004), and cardiac function (Morel
et al. 2005). Finally, with the advent of a molecular genetics
approach taking advantage of Epac knock-out mice, a
fuller apppreciation of the physiological importance of
Epac to cell physiology should be attainable.
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