Skin Grafts and Flaps (Compromised)

Reconstructing complex wounds is accomplished by shifting or transferring tissues to the wound from a different part of the body. A "skin graft" is the transfer of a portion of the skin (without its blood supply) to a wound. A "flap" consists of one or more tissue components including skin, deeper tissues, muscle and bone. Flaps are transferred with either their own, original blood supply (pedicle flap) or with detached blood vessels which are attached at the site of the wound (free flap). Skin grafts survive as oxygen and nutrients diffuse into them from the underlying wound bed. Long-term survival depends on a new blood supply forming from the wound to the graft. When the wound bed does not have enough oxygen supplied to it, the skin graft will at least partially fail.

Common causes for this are previous radiation to the wound area, diabetes mellitus, and certain infections. In these situations, the availability of oxygen in the wound bed can be increased with hyperbaric oxygen therapy (HBO2) in preparation for skin grafting. Additionally, HBO2 can be used after skin grafting to increase the amount of the graft that will survive in these compromised settings.

Flaps also require oxygen and nutrients to survive. The outer, visible portion (usually skin) is furthest from the source of blood supply for the flap. This is the area most likely to be compromised by inadequate oxygen. Factors such as age, nutritional status, smoking, and previous radiation result in an unpredictable pattern of blood flow to the skin. If a flap is found to have less than adequate oxygen after it has been transferred, HBO2 can help minimize the amount of tissue which does not survive and also reduce the need for repeat flap procedures. Partial or complete failure of the wound reconstruction is very difficult for a patient and also very expensive. HBO2 can help by assisting in the preparation and salvage of skin grafts and compromised flaps.

References

  1. McFarlane RM, Wermuth RE. The use of hyperbaric oxygen to prevent necrosis in experimental pedicle flaps and composite skin grafts. Plast Reconstr Surg 1966;37:422-430.
  2. Greenwood TW, Gilchrist AG. The effect of HBO on wound healing following ionizing radiation. In: Trapp WC, ed. Proceedings of the Fifth International Congress on Hyperbaric Medicine, Vol 1. Barnaby, Canada: Simon Frasier University, 1973:253-263.
  3. Tan CM, Im MJ, Myers RA, Hoopes JE. Effect of hyperbaric oxygen and hyperbaric air on survival of island skin flaps. Plast Reconstr Surg 1974;73:27-30.
  4. Zamboni WA. Applications of hyperbaric oxygen therapy in plastic surgery. In: Oriani G, Marroni A, Wattel F, eds. Handbook on Hyperbaric Oxygen Therapy. New York: Springer-Verlag, 1996.

The information above is a synopsis of a more detailed description found on the UHMS website. External Icon It is presented here for educational and informative purposes. Always consult a hyperbaric physician for specific recommendations regarding any HBO therapy.