Acute renal failure

- 1) What is the differential diagnosis of acute renal failure (ARF)?
 - Prerenal / Postrenal / Intrinsic renal injury
 - Use of clinical features and urinary findings to differentiate acute tubular necrosis (ATN) from other causes of intrinsic renal injury
 - Role of renal biopsy
- 2) How do you distinguish ATN from prerenal azotemia?
 - Effect of volume challenge (beware risk of volume overload in ATN)
 - Urinary findings

	Prerenal azotemia	ATN
BUN/Creatinine ratio	> 20	10-15
Urine sodium	< 20	> 40
(U _{Na} in mEq/L)		
Urine osmolality	> 500	< 350
(U _{Osm} in mOsm/kg)		
Fractional excretion of sodium	< 1%	> 2%
(FE _{Na})		
Urine sediment	Normal	Renal tubular epithelial cells
	Occasional nonspecific casts	Muddy brown casts

3) How do you calculate fractional excretion of sodium?

 $FE_{Na} = (urine \text{ sodium} \times \text{ plasma creatinine}) / (plasma sodium \times urine creatinine})$

- 4) What are the causes of ATN?
 - Ischemia/ hypoperfusion
 - Nephrotoxins (aminoglycoside antibiotics, hemoglobin or myoglobin, contrast agents etc.)
- 5) What are the mechanisms of decreased glomerular filtration rate (GFR) in ATN?
 - Casts of necrotic/sloughed tubular epithelial cells ($\uparrow P_T$)
 - Backleak (wasted GFR)
 - Possible ischemic/nephrotoxic effects on glomerulus ($\downarrow K_f$)
 - Tubuloglomerular feedback ($\downarrow P_{GC}$) "acute renal success"
- 6) What determines the susceptibility of the kidney to ischemia?
 - Paradoxical vulnerability of kidney to hypoperfusion
 - Heterogeneity of oxygen delivery to renal parenchyma (medulla operates on the "brink of anovia"
 - (medulla operates on the "brink of anoxia"
 - High oxygen demand in medullary tubules (pars recta proximal tubule and thick ascending limb of Henle) make these segments particularly vulnerable
 - Tubular epithelial oxygen demand is GFR (transport work) dependent
 - No capacity for anaerobic glycolysis in proximal tubule
- 7) What is the usual clinical course of ATN?
 - Initiation (ischemic or nephrotoxic tubular damage)
 - Maintenance phase (low GFR from effects of tubular injury; established renal failure)
 - Recovery phase (rising GFR; recovering tubules)
 - Dangers of hypovolemia and hypokalemia in the diuretic phase
 - Tubular regeneration usually able to restore renal function if patient survives trauma/sepsis etc. (depends on intact tubular basement membranes)